Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18657, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907689

RESUMO

When modeling transcranial magnetic stimulation (TMS) in the brain, a fast and accurate electric field solver can support interactive neuronavigation tasks as well as comprehensive biophysical modeling. We formulate, test, and disseminate a direct (i.e., non-iterative) TMS solver that can accurately determine global TMS fields for any coil type everywhere in a high-resolution MRI-based surface model with ~ 200,000 or more arbitrarily selected observation points within approximately 5 s, with the solution time itself of 3 s. The solver is based on the boundary element fast multipole method (BEM-FMM), which incorporates the latest mathematical advancement in the theory of fast multipole methods-an FMM-based LU decomposition. This decomposition is specific to the head model and needs to be computed only once per subject. Moreover, the solver offers unlimited spatial numerical resolution. Despite the fast execution times, the present direct solution is numerically accurate for the default model resolution. In contrast, the widely used brain modeling software SimNIBS employs a first-order finite element method that necessitates additional mesh refinement, resulting in increased computational cost. However, excellent agreement between the two methods is observed for various practical test cases following mesh refinement, including a biophysical modeling task. The method can be readily applied to a wide range of TMS analyses involving multiple coil positions and orientations, including image-guided neuronavigation. It can even accommodate continuous variations in coil geometry, such as flexible H-type TMS coils. The FMM-LU direct solver is freely available to academic users.


Assuntos
Encéfalo , Estimulação Magnética Transcraniana , Estimulação Magnética Transcraniana/métodos , Encéfalo/fisiologia , Cabeça/fisiologia , Software , Imageamento por Ressonância Magnética/métodos
2.
Res Sq ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503106

RESUMO

Background: When modeling transcranial magnetic stimulation (TMS) in the brain, a fast and accurate electric field solver can support interactive neuronavigation tasks as well as comprehensive biophysical modeling. Objective: We formulate, test, and disseminate a direct (i.e., non-iterative) TMS solver that can accurately determine global TMS fields for any coil type everywhere in a high-resolution MRI-based surface model with ~200,000 or more arbitrarily selected observation points within approximately 5 sec, with the solution time itself of 3 sec. Method: The solver is based on the boundary element fast multipole method (BEM-FMM), which incorporates the latest mathematical advancement in the theory of fast multipole methods - an FMM-based LU decomposition. This decomposition is specific to the head model and needs to be computed only once per subject. Moreover, the solver offers unlimited spatial numerical resolution. Results: Despite the fast execution times, the present direct solution is numerically accurate for the default model resolution. In contrast, the widely used brain modeling software SimNIBS employs a first-order finite element method that necessitates additional mesh refinement, resulting in increased computational cost. However, excellent agreement between the two methods is observed for various practical test cases following mesh refinement, including a biophysical modeling task. Conclusion: The method can be readily applied to a wide range of TMS analyses involving multiple coil positions and orientations, including image-guided neuronavigation. It can even accommodate continuous variations in coil geometry, such as flexible H-type TMS coils. The FMM-LU direct solver is freely available to academic users.

3.
Science ; 265(5174): 909-14, 1994 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-17782141

RESUMO

Some of the recently developed fast summation methods that have arisen in scientific computing are described. These methods require an amount of work proportional to N or N log N to evaluate all pairwise interactions in an ensemble of N particles. Traditional methods, by contrast, require an amount of work proportional to N(2). As a result, largescale simulations can be carried out using only modest computer resources. In combination with supercomputers, it is possible to address questions that were previously out of reach. Problems from diffusion, gravitation, and wave propagation are considered.

4.
Opt Express ; 12(18): 4220-6, 2004 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-19483967

RESUMO

Photonic crystal fibers are well-known to offer a number of unusual properties, including supercontinuum generation, large mode-areas and controllable dispersion behavior. Their manufacturability would be enhanced by a more detailed understanding of how small perturbations in the fiber's geometric structure cause variations in the fiber's fundamental modes. In this paper, we demonstrate that such sensitivity analysis is feasible using highly accurate boundary integral techniques.

5.
Opt Express ; 12(16): 3791-805, 2004 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-19483911

RESUMO

We present a new integral equation method for calculating the electromagnetic modes of photonic crystal fiber (PCF) waveguides. Our formulation can easily handle PCFs with arbitrary hole geometries and irregular hole distributions, enabling optical component manufacturers to optimize hole designs as well as assess the effect of manufacturing defects. The method produces accurate results for both the real and imaginary parts of the propagation constants, which we validated through extensive convergence analysis and by comparison with previously published results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA