Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Stem Cells ; 35(8): 1913-1923, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28580685

RESUMO

During cardiac development, DNA binding transcription factors and epigenetic modifiers regulate gene expression in cardiac progenitor cells (CPCs). We have previously shown that Yin Yang 1 (YY1) is essential for the commitment of mesodermal precursors into CPCs. However, the role of YY1 in the maintenance of CPC phenotype and their differentiation into cardiomyocytes is unknown. In this study, we found, by genome-wide transcriptional profiling and phenotypic assays, that YY1 overexpression prevents cardiomyogenic differentiation and maintains the proliferative capacity of CPCs. We show further that the ability of YY1 to regulate CPC phenotype is associated with its ability to modulate histone modifications specifically at a developmentally critical enhancer of Nkx2-5 and other key cardiac transcription factor such as Tbx5. Specifically, YY1 overexpression helps to maintain markers of gene activation such as the acetylation of histone H3 at lysine 9 (H3K9Ac) and lysine 27 (H3K27Ac) as well as trimethylation at lysine 4 (H3K4Me3) at the Nkx2-5 cardiac enhancer. Furthermore, transcription factors associated proteins such as PoIII, p300, and Brg1 are also enriched at the Nkx2-5 enhancer with YY1 overexpression. The biological activities of YY1 in CPCs appear to be cell autonomous, based coculture assays in differentiating embryonic stem cells. Altogether, these results demonstrate that YY1 overexpression is sufficient to maintain a CPC phenotype through its ability to sustain the presence of activating epigenetic/chromatin marks at key cardiac enhancers. Stem Cells 2017;35:1913-1923.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Miocárdio/citologia , Fator de Transcrição YY1/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/genética , Linhagem Celular , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Mutação com Ganho de Função , Regulação da Expressão Gênica , Proteína Homeobox Nkx-2.5/genética , Camundongos
2.
Circ Res ; 112(6): 900-10, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23307821

RESUMO

RATIONALE: Cardiogenesis is regulated by a complex interplay between transcription factors. However, little is known about how these interactions regulate the transition from mesodermal precursors to cardiac progenitor cells (CPCs). OBJECTIVE: To identify novel regulators of mesodermal cardiac lineage commitment. METHODS AND RESULTS: We performed a bioinformatic-based transcription factor binding site analysis on upstream promoter regions of genes that are enriched in embryonic stem cell-derived CPCs. From 32 candidate transcription factors screened, we found that Yin Yang 1 (YY1), a repressor of sarcomeric gene expression, is present in CPCs in vivo. Interestingly, we uncovered the ability of YY1 to transcriptionally activate Nkx2.5, a key marker of early cardiogenic commitment. YY1 regulates Nkx2.5 expression via a 2.1-kb cardiac-specific enhancer as demonstrated by in vitro luciferase-based assays, in vivo chromatin immunoprecipitation, and genome-wide sequencing analysis. Furthermore, the ability of YY1 to activate Nkx2.5 expression depends on its cooperative interaction with Gata4 at a nearby chromatin. Cardiac mesoderm-specific loss-of-function of YY1 resulted in early embryonic lethality. This was corroborated in vitro by embryonic stem cell-based assays in which we showed that the overexpression of YY1 enhanced the cardiogenic differentiation of embryonic stem cells into CPCs. CONCLUSIONS: These results demonstrate an essential and unexpected role for YY1 to promote cardiogenesis as a transcriptional activator of Nkx2.5 and other CPC-enriched genes.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Proteínas de Homeodomínio/metabolismo , Mioblastos Cardíacos/citologia , Fatores de Transcrição/metabolismo , Fator de Transcrição YY1/fisiologia , Animais , Diferenciação Celular/genética , Fator de Transcrição GATA4/metabolismo , Estudo de Associação Genômica Ampla/métodos , Proteína Homeobox Nkx-2.5 , Camundongos , Mioblastos Cardíacos/química , Ativação Transcricional/fisiologia , Fator de Transcrição YY1/análise , Fator de Transcrição YY1/genética
3.
Circ Res ; 111(1): 50-5, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22581928

RESUMO

RATIONALE: Direct reprogramming of fibroblasts into cardiomyocytes is a novel strategy for cardiac regeneration. However, the key determinants involved in this process are unknown. OBJECTIVE: To assess the efficiency of direct fibroblast reprogramming via viral overexpression of GATA4, Mef2c, and Tbx5 (GMT). METHODS AND RESULTS: We induced GMT overexpression in murine tail tip fibroblasts (TTFs) and cardiac fibroblasts (CFs) from multiple lines of transgenic mice carrying different cardiomyocyte lineage reporters. We found that the induction of GMT overexpression in TTFs and CFs is inefficient at inducing molecular and electrophysiological phenotypes of mature cardiomyocytes. In addition, transplantation of GMT infected CFs into injured mouse hearts resulted in decreased cell survival with minimal induction of cardiomyocyte genes. CONCLUSIONS: Significant challenges remain in our ability to convert fibroblasts into cardiomyocyte-like cells and a greater understanding of cardiovascular epigenetics is needed to increase the translational potential of this strategy.


Assuntos
Transdiferenciação Celular , Fibroblastos/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Regulação Miogênica/metabolismo , Proteínas com Domínio T/metabolismo , Potenciais de Ação , Animais , Linhagem da Célula , Sobrevivência Celular , Transdiferenciação Celular/efeitos dos fármacos , Feminino , Fibroblastos/transplante , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Genótipo , Células HEK293 , Humanos , Fatores de Transcrição MEF2 , Masculino , Camundongos , Camundongos SCID , Camundongos Transgênicos , Miócitos Cardíacos/transplante , Fatores de Regulação Miogênica/genética , Técnicas de Patch-Clamp , Fenótipo , Reação em Cadeia da Polimerase , Proteínas com Domínio T/genética , Fatores de Tempo , Transcrição Gênica , Transfecção , Regulação para Cima
4.
Mol Cell Biol ; 27(4): 1280-95, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17158926

RESUMO

The myocyte enhancer factor 2 (MEF2) family of transcription factors is not only important for controlling gene expression in normal cellular programs, like muscle differentiation, T-cell apoptosis, neuronal survival, and synaptic differentiation, but has also been linked to cardiac hypertrophy and other pathological conditions. Lysine acetylation has been shown to modulate MEF2 function, but it is not so clear which deacetylase(s) is involved. We report here that treatment of HEK293 cells with trichostatin A or nicotinamide upregulated MEF2D acetylation, suggesting that different deacetylases catalyze the deacetylation. Related to the trichostatin A sensitivity, histone deacetylase 4 (HDAC4) and HDAC5, two known partners of MEF2, exhibited little deacetylase activity towards MEF2D. In contrast, HDAC3 efficiently deacetylated MEF2D in vitro and in vivo. This was specific, since HDAC1, HDAC2, and HDAC8 failed to do so. While HDAC4, HDAC5, HDAC7, and HDAC9 are known to recognize primarily the MEF2-specific domain, we found that HDAC3 interacts directly with the MADS box. In addition, HDAC3 associated with the acetyltransferases p300 and p300/CBP-associated factor (PCAF) to reverse autoacetylation. Furthermore, the nuclear receptor corepressor SMRT (silencing mediator of retinoid acid and thyroid hormone receptor) stimulated the deacetylase activity of HDAC3 towards MEF2 and PCAF. Supporting the physical interaction and deacetylase activity, HDAC3 repressed MEF2-dependent transcription and inhibited myogenesis. These results reveal an unexpected role for HDAC3 and suggest a novel pathway through which MEF2 activity is controlled in vivo.


Assuntos
Histona Desacetilases/metabolismo , Fatores de Regulação Miogênica/metabolismo , Acetilação , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferases/metabolismo , Humanos , Fatores de Transcrição MEF2 , Camundongos , Modelos Genéticos , Desenvolvimento Muscular/genética , Mioblastos/citologia , Mioblastos/enzimologia , Proteínas Nucleares/metabolismo , Correpressor 1 de Receptor Nuclear , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Transcrição de p300-CBP
5.
Mol Cell Biol ; 25(6): 2273-87, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15743823

RESUMO

The myocyte enhancer factor-2 (MEF2) family of transcription factors plays an important role in regulating cellular programs like muscle differentiation, neuronal survival, and T-cell apoptosis. Multisite phosphorylation is known to control the transcriptional activity of MEF2 proteins, but it is unclear whether other modifications are involved. Here, we report that human MEF2D, as well as MEF2C, is modified by SUMO2 and SUMO3 at a motif highly conserved among MEF2 proteins from diverse organisms. This motif is located within the C-terminal transcriptional activation domain, and its sumoylation inhibits transcription. As a transcriptional corepressor of MEF2, histone deacetylase 4 (HDAC4) potentiates sumoylation. This potentiation is dependent on the N-terminal region but not the C-terminal deacetylase domain of HDAC4 and is inhibited by the sumoylation of HDAC4 itself. Moreover, HDAC5, HDAC7, and an HDAC9 isoform also stimulate sumoylation of MEF2. Opposing the action of class IIa deacetylases, the SUMO protease SENP3 reverses the sumoylation to augment the transcriptional and myogenic activities of MEF2. Similarly, the calcium/calmodulin-dependent kinases [corrected] and extracellular signal-regulated kinase 5 signaling pathways negatively regulate the sumoylation. These results thus identify sumoylation as a novel regulatory mechanism for MEF2 and suggest that this modification interplays with phosphorylation to promote intramolecular signaling for coordinated regulation in vivo.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endopeptidases/fisiologia , Histona Desacetilases/fisiologia , Fatores de Regulação Miogênica/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/fisiologia , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Linhagem Celular , Núcleo Celular/química , Sequência Conservada , Cisteína Endopeptidases , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Histona Desacetilases/análise , Histona Desacetilases/genética , Humanos , Isoenzimas/fisiologia , Proteínas de Domínio MADS , Fatores de Transcrição MEF2 , Proteína Quinase 7 Ativada por Mitógeno/fisiologia , Dados de Sequência Molecular , Mutação/genética , Fatores de Regulação Miogênica/análise , Fatores de Regulação Miogênica/genética , Estrutura Terciária de Proteína , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/análise , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Transcrição Gênica , Regulação para Cima
6.
Curr Protoc Protein Sci ; 87: 14.11.1-14.11.18, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28150880

RESUMO

Lysine acetylation refers to addition of an acetyl moiety to the epsilon-amino group of a lysine residue and is important for regulating protein functions in various organisms from bacteria to humans. This is a reversible and precisely controlled covalent modification that either serves as an on/off switch or participates in a codified manner with other post-translational modifications to regulate different cellular and developmental processes in normal and pathological states. This unit describes methods for in vitro and in vivo determination of lysine acetylation. Such methods can be easily extended for analysis of other acylations (such as propionylation, butyrylation, crotonylation, and succinylation) that are also present in histones and many other proteins. © 2017 by John Wiley & Sons, Inc.


Assuntos
Lisina/química , Processamento de Proteína Pós-Traducional , Proteínas/química , Acetilação , Acilação , Animais , Anticorpos/imunologia , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Histonas/química , Humanos , Lisina Acetiltransferases/química , Lisina Acetiltransferases/metabolismo , Coelhos
7.
PLoS One ; 9(12): e113775, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25436607

RESUMO

Vertebrate heart development is strictly regulated by temporal and spatial expression of growth and transcription factors (TFs). We analyzed nine TFs, selected by in silico analysis of an Nkx2.5 enhancer, for their ability to transactivate the respective enhancer element that drives, specifically, expression of genes in cardiac progenitor cells (CPCs). Mzf1 showed significant activity in reporter assays and bound directly to the Nkx2.5 cardiac enhancer (Nkx2.5 CE) during murine ES cell differentiation. While Mzf1 is established as a hematopoietic TF, its ability to regulate cardiogenesis is completely unknown. Mzf1 expression was significantly enriched in CPCs from in vitro differentiated ES cells and in mouse embryonic hearts. To examine the effect of Mzf1 overexpression on CPC formation, we generated a double transgenic, inducible, tetOMzf1-Nkx2.5 CE eGFP ES line. During in vitro differentiation an early and continuous Mzf1 overexpression inhibited CPC formation and cardiac gene expression. A late Mzf1 overexpression, coincident with a second physiological peak of Mzf1 expression, resulted in enhanced cardiogenesis. These findings implicate a novel, temporal-specific role of Mzf1 in embryonic heart development. Thereby we add another piece of puzzle in understanding the complex mechanisms of vertebrate cardiac development and progenitor cell differentiation. Consequently, this knowledge will be of critical importance to guide efficient cardiac regenerative strategies and to gain further insights into the molecular basis of congenital heart malformations.


Assuntos
Elementos Facilitadores Genéticos , Coração/embriologia , Proteínas de Homeodomínio/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Simulação por Computador , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Proteína Homeobox Nkx-2.5 , Humanos , Camundongos , Camundongos Transgênicos
9.
Ann N Y Acad Sci ; 1188: 7-14, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20201880

RESUMO

Cardiac development is characterized by a complex interplay of chemical, mechanical, and electrical forces, which together contribute to the proper formation of the heart muscle. In adult myocardium, cardiomyocytes are elongated, well-coupled by gap junctions, and organized in spatially well-defined muscle fibers. This specific tissue architecture affects electromechanical activation and global cardiac function. Since the adult heart has only limited capacity for repair after injury, a significant loss of myocardial tissue often leads to impaired cardiac function. Recent efforts to transplant autologous cells to counteract this cardiomyocyte loss have resulted in marginal functional improvement and no evidence of myocyte regeneration. In order to achieve durable therapeutic efficiency, the transplanted cells will need to not only be cardiomyogenic, but also functionally integrate with host myocardial tissue and thereby contribute to both structural and functional restoration.


Assuntos
Transplante de Células , Coração/fisiologia , Envelhecimento , Animais , Coração/embriologia , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Cardiopatias/cirurgia , Humanos , Regeneração
10.
Curr Protoc Protein Sci ; Chapter 14: 14.11.1-14.11.17, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19016432

RESUMO

Protein lysine acetylation, referring to acetylation of the epsilon-amino group of a lysine residue, has recently emerged as an important post-translational modification for regulating protein functions in various organisms. Like phosphorylation, lysine acetylation is a rapidly reversible and precisely controlled covalent modification that serves as a simple on/off switch or participates in a codified manner with other post-translational modifications to regulate protein functions in different cellular and developmental processes. This unit describes and discusses methods used for in vitro and in vivo determination of lysine acetylation.


Assuntos
Bioquímica/métodos , Lisina/análise , Processamento de Proteína Pós-Traducional , Proteínas/análise , Acetilação , Autorradiografia , Celulose/análogos & derivados , Celulose/química , Humanos , Radioatividade
11.
EMBO Rep ; 8(6): 556-62, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17545996

RESUMO

Acetylation of the epsilon-amino group of lysine residues (N(epsilon)-acetylation) is a reversible post-translational modification with the potential to rival phosphorylation. In addition to histones and many transcription factors such as p53, regulators of DNA repair, replication and recombination are subject to N(epsilon)-acetylation. This modification is also important for governing the activities of various enzymes, including histone acetyltransferases, histone deacetylases, bacterial and mammalian acetyl-CoA synthases, kinases, phosphatases, the ubiquitin ligase murine double minute 2 and the chaperonin heat shock protein 90. Furthermore, lysine acetylation occurs in cellular structure proteins such as alpha-tubulin, actin, cortactin and p120 catenin. Strikingly, the Yersinia outer protein YopJ promotes O-acetylation of crucial serine and threonine residues that are required for activation of the MAPK/ERK kinase and IkappaB kinase families, which precludes their phosphorylation and blocks signal transduction. Thus, N(epsilon)- and O-acetylation are becoming recognized as two prominent mechanisms for regulating protein functions in diverse organisms.


Assuntos
Citoesqueleto/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Transdução de Sinais , Acetilação , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Fosforilação , Proteínas/química
12.
Mol Cell ; 23(6): 779-86, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16973431

RESUMO

How multisite posttranslational modification coordinates dynamic regulation of protein function is an issue fundamental to many biological processes. Related to this, a composite sequence motif has recently been identified that couples phosphorylation, sumoylation, and perhaps also deacetylation to control transcriptional repression in stress response, mitogen and nuclear hormone signaling, myogenesis, and neuronal differentiation. This motif is present in many proteins, integrates cellular signals from diverse pathways, and serves as a valuable signature for in silico identification of proteins regulated by adjacent phosphorylation and sumoylation.


Assuntos
Regulação da Expressão Gênica , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Acetilação , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Dados de Sequência Molecular , Família Multigênica , Fosforilação , Alinhamento de Sequência , Transdução de Sinais , Transcrição Gênica
13.
J Biol Chem ; 281(7): 4423-33, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16356933

RESUMO

A eukaryotic protein is often subject to regulation by multiple modifications like phosphorylation, acetylation, ubiquitination, and sumoylation. How these modifications are coordinated in vivo is an important issue that is poorly understood but is relevant to many biological processes. We recently showed that human MEF2D (myocyte enhancer factor 2D) is sumoylated on Lys-439. Adjacent to the sumoylation motif is Ser-444, which like Lys-439 is highly conserved among MEF2 proteins from diverse species. Here we present [corrected] several lines of evidence to demonstrate that Ser-444 of MEF2D is required for sumoylation of Lys-439. Histone deacetylase 4 (HDAC4) stimulated this modification by acting through Ser-444. In addition, phosphorylation of Ser-444 by Cdk5, a cyclin-dependent kinase known to inhibit MEF2 transcriptional activity, stimulated sumoylation. Opposing the actions of HDAC4 and Cdk5, calcineurin (also known as protein phosphatase 2B) dephosphorylated Ser-444 and inhibited sumoylation of Lys-439. This phosphatase, however, exerted minimal effects on the phosphorylation catalyzed by ERK5, an extracellular signal-regulated kinase known to activate MEF2D. These results identify [corrected] an essential role for Ser-444 in MEF2D sumoylation and reveal [corrected] a novel mechanism by which calcineurin selectively "edits" phosphorylation at different sites, thereby reiterating that interplay between different modifications represents a general mechanism for coordinated regulation of eukaryotic protein functions in vivo.


Assuntos
Proteínas de Domínio MADS/genética , Fatores de Regulação Miogênica/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Calcineurina/fisiologia , Células Cultivadas , Quinase 5 Dependente de Ciclina/fisiologia , Histona Desacetilases/farmacologia , Humanos , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição MEF2 , Dados de Sequência Molecular , Fatores de Regulação Miogênica/metabolismo , Fosforilação , Proteínas Repressoras/farmacologia
14.
J Biol Chem ; 280(32): 29117-27, 2005 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-15964851

RESUMO

Eighteen human histone deacetylases (HDACs) have been identified, and according to their sequence similarity to yeast homologs, these enzymes are grouped into distinct classes. Within class II, HDAC4, HDAC5, HDAC7, and HDAC9 share similar domain organization both within the N-terminal extension and the C-terminal catalytic domain, thus forming a subclass known as class IIa. These HDACs function as signal-responsive transcriptional corepressors. To gain further insight into their function and regulation, we utilized an N-terminal fragment of HDAC4 as bait in yeast two-hybrid screens, which uncovered myocyte enhancer factor 2C, 14-3-3zeta, and ankyrin repeat family A protein (ANKRA). ANKRA is a poorly characterized protein with an ankyrin repeat domain similar to RFXANK, a subunit of the trimeric transcription factor RFX. Mutations on genes of the RFX subunits and the coactivator CIITA are responsible for the bare lymphocyte syndrome, an immunodeficiency disorder attributed to the lack of major histocompatibility complex class II (MHCII) antigens. Through its ankyrin repeat domain, RFXANK interacted with HDAC4. Two RFXANK-binding sites were found on HDAC4 with one located within residues 118-279 and another within residues 448-666. Interestingly, this deacetylase also interacted with CIITA. Consistent with the physical interaction with RFXANK and CIITA, HDAC4 and homologs repressed MHCII expression. These results identify ANKRA, RFXANK, and CIITA as novel targets of class IIa HDACs and suggest that these deacetylases play a role in regulating MHCII expression.


Assuntos
Anquirinas/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Histona Desacetilases/química , Glicoproteínas de Membrana/química , Fatores de Transcrição/química , Proteínas 14-3-3/química , Animais , Anquirinas/metabolismo , Sítios de Ligação , Linhagem Celular , Proteínas de Ligação a DNA , Dimerização , Deleção de Genes , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Insetos , Proteínas de Domínio MADS , Fatores de Transcrição MEF2 , Glicoproteínas de Membrana/metabolismo , Camundongos , Microscopia de Fluorescência , Modelos Genéticos , Mutação , Fatores de Regulação Miogênica/química , Células NIH 3T3 , Proteínas Nucleares/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transativadores/química , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA