Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 160(6): 1125-34, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25768908

RESUMO

Circular RNAs (circRNAs), formed by non-sequential back-splicing of pre-mRNA transcripts, are a widespread form of non-coding RNA in animal cells. However, it is unclear whether the majority of circRNAs represent splicing by-products without function or are produced in a regulated manner to carry out specific cellular functions. We show that hundreds of circRNAs are regulated during human epithelial-mesenchymal transition (EMT) and find that the production of over one-third of abundant circRNAs is dynamically regulated by the alternative splicing factor, Quaking (QKI), which itself is regulated during EMT. Furthermore, by modulating QKI levels, we show the effect on circRNA abundance is dependent on intronic QKI binding motifs. Critically, the addition of QKI motifs is sufficient to induce de novo circRNA formation from transcripts that are normally linearly spliced. These findings demonstrate circRNAs are both purposefully synthesized and regulated by cell-type specific mechanisms, suggesting they play specific biological roles in EMT.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Linhagem Celular , Éxons , Humanos , Íntrons , Splicing de RNA , RNA Circular
2.
Nucleic Acids Res ; 52(3): 1387-1403, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38015468

RESUMO

While the majority of circRNAs are formed from infrequent back-splicing of exons from protein coding genes, some can be produced at quite high level and in a regulated manner. We describe the regulation, biogenesis and function of circDOCK1(2-27), a large, abundant circular RNA that is highly regulated during epithelial-mesenchymal transition (EMT) and whose formation depends on the epithelial splicing regulator ESRP1. CircDOCK1(2-27) synthesis in epithelial cells represses cell motility both by diverting transcripts from DOCK1 mRNA production to circRNA formation and by direct inhibition of migration by the circRNA. HITS-CLIP analysis and CRISPR-mediated deletions indicate ESRP1 controls circDOCK1(2-27) biosynthesis by binding a GGU-containing repeat region in intron 1 and detaining its splicing until Pol II completes its 157 kb journey to exon 27. Proximity-dependent biotinylation (BioID) assay suggests ESRP1 may modify the RNP landscape of intron 1 in a way that disfavours communication of exon 1 with exon 2, rather than physically bridging exon 2 to exon 27. The X-ray crystal structure of RNA-bound ESRP1 qRRM2 domain reveals it binds to GGU motifs, with the guanines embedded in clamp-like aromatic pockets in the protein.


Assuntos
Processamento Alternativo , RNA Circular , Proteínas de Ligação a RNA , Proteínas rac de Ligação ao GTP , RNA/genética , RNA/metabolismo , Splicing de RNA , RNA Circular/genética , Humanos , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
3.
Semin Cancer Biol ; 102-103: 4-16, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38917876

RESUMO

Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-ß signalling. Both EMT and TGF-ß pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-ß signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-ß signaling with a focus on their functions in cancer progression.


Assuntos
Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias , Transdução de Sinais , Fator de Crescimento Transformador beta , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Animais , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Circular/genética
4.
Nucleic Acids Res ; 51(18): 9938-9951, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37522357

RESUMO

MiRNAs post-transcriptionally repress gene expression by binding to mRNA 3'UTRs, but the extent to which they act through protein coding regions (CDS regions) is less well established. MiRNA interaction studies show a substantial proportion of binding occurs in CDS regions, however sequencing studies show much weaker effects on mRNA levels than from 3'UTR interactions, presumably due to competition from the translating ribosome. Consequently, most target prediction algorithms consider only 3'UTR interactions. However, the consequences of CDS interactions may have been underestimated, with the reporting of a novel mode of miRNA-CDS interaction requiring base pairing of the miRNA 3' end, but not the canonical seed site, leading to repression of translation with little effect on mRNA turnover. Using extensive reporter, western blotting and bioinformatic analyses, we confirm that miRNAs can indeed suppress genes through CDS-interaction in special circumstances. However, in contrast to that previously reported, we find repression requires extensive base-pairing, including of the canonical seed, but does not strictly require base pairing of the 3' miRNA terminus and is mediated through reducing mRNA levels. We conclude that suppression of endogenous genes can occur through miRNAs binding to CDS, but the requirement for extensive base-pairing likely limits the regulatory impacts to modest effects on a small subset of targets.

5.
Growth Factors ; 42(2): 49-61, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38299881

RESUMO

Breast cancer represents a collection of pathologies with different molecular subtypes, histopathology, risk factors, clinical behavior, and responses to treatment. "Basal-like" breast cancers predominantly lack the receptors for estrogen and progesterone (ER/PR), lack amplification of human epidermal growth factor receptor 2 (HER2) but account for 10-15% of all breast cancers, are largely insensitive to targeted treatment and represent a disproportionate number of metastatic cases and deaths. Analysis of interleukin (IL)-3 and the IL-3 receptor subunits (IL-3RA + CSF2RB) reveals elevated expression in predominantly the basal-like group. Further analysis suggests that IL-3 itself, but not the IL-3 receptor subunits, associates with poor patient outcome. Histology on patient-derived xenografts supports the notion that breast cancer cells are a significant source of IL-3 that may promote disease progression. Taken together, these observations suggest that IL-3 may be a useful marker in solid tumors, particularly triple negative breast cancer, and warrants further investigation into its contribution to disease pathogenesis.


Assuntos
Neoplasias da Mama , Interleucina-3 , Humanos , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Interleucina-3/metabolismo , Animais , Prognóstico , Camundongos , Linhagem Celular Tumoral
6.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38112323

RESUMO

Epithelial-mesenchymal transition (EMT) plays important roles in tumour progression and is orchestrated by dynamic changes in gene expression. While it is well established that post-transcriptional regulation plays a significant role in EMT, the extent of alternative polyadenylation (APA) during EMT has not yet been explored. Using 3' end anchored RNA sequencing, we mapped the alternative polyadenylation (APA) landscape following Transforming Growth Factor (TGF)-ß-mediated induction of EMT in human mammary epithelial cells and found APA generally causes 3'UTR lengthening during this cell state transition. Investigation of potential mediators of APA indicated the RNA-binding protein Quaking (QKI), a splicing factor induced during EMT, regulates a subset of events including the length of its own transcript. Analysis of QKI crosslinked immunoprecipitation (CLIP)-sequencing data identified the binding of QKI within 3' untranslated regions (UTRs) was enriched near cleavage and polyadenylation sites. Following QKI knockdown, APA of many transcripts is altered to produce predominantly shorter 3'UTRs associated with reduced gene expression. These findings reveal the changes in APA that occur during EMT and identify a potential role for QKI in this process.


Assuntos
Regulação da Expressão Gênica , Poliadenilação , Humanos , Transição Epitelial-Mesenquimal/genética , Sequência de Bases , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas
7.
Breast Cancer Res ; 24(1): 8, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078508

RESUMO

BACKGROUND: Triple-negative breast cancers (TNBC) have a relatively poor prognosis and responses to targeted therapies. Between 25 and 39% of TNBCs are claudin-low, a poorly differentiated subtype enriched for mesenchymal, stem cell and mitogen-activated signaling pathways. We investigated the role of the cell-surface co-receptor NRP1 in the biology of claudin-low TNBC. METHODS: The clinical prognostic value of NRP1 was determined by Kaplan-Meier analysis. GSVA analysis of METABRIC and Oslo2 transcriptomics datasets was used to correlate NRP1 expression with claudin-low gene signature scores. NRP1 siRNA knockdown was performed in MDA-MB-231, BT-549, SUM159 and Hs578T claudin-low cells and proliferation and viability measured by live cell imaging and DNA quantification. In SUM159 orthotopic xenograft models using NSG mice, NRP1 was suppressed by shRNA knockdown or systemic treatment with the NRP1-targeted monoclonal antibody Vesencumab. NRP1-mediated signaling pathways were interrogated by protein array and Western blotting. RESULTS: High NRP1 expression was associated with shorter relapse- and metastasis-free survival specifically in ER-negative BrCa cohorts. NRP1 was over-expressed specifically in claudin-low clinical samples and cell lines, and NRP1 knockdown reduced proliferation of claudin-low cells and prolonged survival in a claudin-low orthotopic xenograft model. NRP1 inhibition suppressed expression of the mesenchymal and stem cell markers ZEB1 and ITGA6, respectively, compromised spheroid-initiating capacity and exerted potent anti-tumor effects on claudin-low orthotopic xenografts (12.8-fold reduction in endpoint tumor volume). NRP1 was required to maintain maximal RAS/MAPK signaling via EGFR and PDGFR, a hallmark of claudin-low tumors. CONCLUSIONS: These data implicate NRP1 in the aggressive phenotype of claudin-low breast cancer and offer a novel targeted therapeutic approach to this poor prognosis subtype.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Claudinas/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Recidiva Local de Neoplasia , Neuropilina-1/genética , Neuropilina-1/uso terapêutico , Células-Tronco/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteínas ras
8.
EMBO J ; 37(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29871889

RESUMO

Members of the miR-200 family are critical gatekeepers of the epithelial state, restraining expression of pro-mesenchymal genes that drive epithelial-mesenchymal transition (EMT) and contribute to metastatic cancer progression. Here, we show that miR-200c and another epithelial-enriched miRNA, miR-375, exert widespread control of alternative splicing in cancer cells by suppressing the RNA-binding protein Quaking (QKI). During EMT, QKI-5 directly binds to and regulates hundreds of alternative splicing targets and exerts pleiotropic effects, such as increasing cell migration and invasion and restraining tumour growth, without appreciably affecting mRNA levels. QKI-5 is both necessary and sufficient to direct EMT-associated alternative splicing changes, and this splicing signature is broadly conserved across many epithelial-derived cancer types. Importantly, several actin cytoskeleton-associated genes are directly targeted by both QKI and miR-200c, revealing coordinated control of alternative splicing and mRNA abundance during EMT These findings demonstrate the existence of a miR-200/miR-375/QKI axis that impacts cancer-associated epithelial cell plasticity through widespread control of alternative splicing.


Assuntos
Processamento Alternativo/fisiologia , Plasticidade Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , MicroRNAs/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Cães , Humanos , Células Madin Darby de Rim Canino , Camundongos SCID
9.
Nucleic Acids Res ; 47(16): 8606-8619, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31372646

RESUMO

Epithelial-mesenchymal transition (EMT) has been a subject of intense scrutiny as it facilitates metastasis and alters drug sensitivity. Although EMT-regulatory roles for numerous miRNAs and transcription factors are known, their functions can be difficult to disentangle, in part due to the difficulty in identifying direct miRNA targets from complex datasets and in deciding how to incorporate 'indirect' miRNA effects that may, or may not, represent biologically relevant information. To better understand how miRNAs exert effects throughout the transcriptome during EMT, we employed Exon-Intron Split Analysis (EISA), a bioinformatic technique that separates transcriptional and post-transcriptional effects through the separate analysis of RNA-Seq reads mapping to exons and introns. We find that in response to the manipulation of miRNAs, a major effect on gene expression is transcriptional. We also find extensive co-ordination of transcriptional and post-transcriptional regulatory mechanisms during both EMT and mesenchymal to epithelial transition (MET) in response to TGF-ß or miR-200c respectively. The prominent transcriptional influence of miRNAs was also observed in other datasets where miRNA levels were perturbed. This work cautions against a narrow approach that is limited to the analysis of direct targets, and demonstrates the utility of EISA to examine complex regulatory networks involving both transcriptional and post-transcriptional mechanisms.


Assuntos
Transição Epitelial-Mesenquimal/genética , Redes Reguladoras de Genes , MicroRNAs/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Transcrição Gênica , Linhagem Celular , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Éxons , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Íntrons , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Transfecção , Fator de Crescimento Transformador beta/farmacologia
10.
Semin Cell Dev Biol ; 75: 50-60, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28789987

RESUMO

Interconversions between epithelial and mesenchymal states, often referred to as epithelial mesenchymal transition (EMT) and its reverse MET, play important roles in embryonic development and are recapitulated in various adult pathologies including cancer progression. These conversions are regulated by complex transcriptional and post-transcriptional mechanisms including programs of alternative splicing which are orchestrated by specific splicing factors. This review will focus on the latest developments in our understanding of the splicing factors regulating epithelial mesenchymal plasticity associated with cancer progression and the induction of pluripotency, including potential roles for circular RNAs (circRNAs) which have been recently implicated in these processes.


Assuntos
Processamento Alternativo , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica , RNA/genética , Animais , Humanos , Modelos Genéticos , Isoformas de RNA/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Circular , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
Arch Biochem Biophys ; 677: 108169, 2019 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-31697914

RESUMO

Pyruvate carboxylase (PC) is a biotin-containing enzyme that converts pyruvate to oxaloacetate. We have previously shown that PC is overexpressed in highly invasive cancer cell lines where it supports biosynthesis during rapid cell growth. Here, we show that miR-143-3p suppresses the expression of PC in MDA-MB-231 cells by targeting its conserved binding site in the 3'-untranslated region (UTR) of human PC mRNA. Incorporation of the PC 3'UTR into a luciferase reporter gene inhibited expression of luciferase by 50% while mutation of the miR-143-3p binding site abrogated this inhibitory effect in MDA-MB-231 cells but not in low aggressive MCF-7 cell line. Transfection of miR-143-3p mimic or overexpression of miR-143-3p using tetracycline-inducible system in MDA-MB-231 cells down-regulated expression of both endogenous PC mRNA and protein by 40% and 50% respectively, confirming the regulatory role of miR-143-3p in PC expression. Induction of miR-143-3p expression at low and high levels lowered proliferation, metabolic activity and migration of MDA-MB-231 cells, in a dose-dependent manner. Re-expression of PC in MDA-MB-231 cells which were induced to express miR-143-3p partially restored migration but not proliferation, indicating that miR-143-3p regulates proliferation and migration through multiple pathways.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , Piruvato Carboxilase/metabolismo , Regiões 3' não Traduzidas , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Biologia Computacional , Regulação para Baixo , Humanos , Piruvato Carboxilase/genética , RNA Mensageiro/química , RNA Mensageiro/metabolismo
12.
EMBO J ; 33(18): 2040-56, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25069772

RESUMO

The microRNAs of the miR-200 family maintain the central characteristics of epithelia and inhibit tumor cell motility and invasiveness. Using the Ago-HITS-CLIP technology for transcriptome-wide identification of direct microRNA targets in living cells, along with extensive validation to verify the reliability of the approach, we have identified hundreds of miR-200a and miR-200b targets, providing insights into general features of miRNA target site selection. Gene ontology analysis revealed a predominant effect of miR-200 targets in widespread coordinate control of actin cytoskeleton dynamics. Functional characterization of the miR-200 targets indicates that they constitute subnetworks that underlie the ability of cancer cells to migrate and invade, including coordinate effects on Rho-ROCK signaling, invadopodia formation, MMP activity, and focal adhesions. Thus, the miR-200 family maintains the central characteristics of the epithelial phenotype by acting on numerous targets at multiple levels, encompassing both cytoskeletal effectors that control actin filament organization and dynamics, and upstream signals that locally regulate the cytoskeleton to maintain cell morphology and prevent cell migration.


Assuntos
Movimento Celular , Proliferação de Células , Células Epiteliais/fisiologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular , Citoesqueleto/metabolismo , Humanos
13.
Genes Dev ; 23(18): 2140-51, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19759262

RESUMO

Metastatic disease is a primary cause of cancer-related death, and factors governing tumor cell metastasis have not been fully elucidated. Here, we address this question by using tumor cell lines derived from mice that develop metastatic lung adenocarcinoma owing to expression of mutant K-ras and p53. Despite having widespread somatic genetic alterations, the metastasis-prone tumor cells retained a marked plasticity. They transited reversibly between epithelial and mesenchymal states, forming highly polarized epithelial spheres in three-dimensional culture that underwent epithelial-to-mesenchymal transition (EMT) following treatment with transforming growth factor-beta or injection into syngeneic mice. This transition was entirely dependent on the microRNA (miR)-200 family, which decreased during EMT. Forced expression of miR-200 abrogated the capacity of these tumor cells to undergo EMT, invade, and metastasize, and conferred transcriptional features of metastasis-incompetent tumor cells. We conclude that tumor cell metastasis is regulated by miR-200 expression, which changes in response to contextual extracellular cues.


Assuntos
Espaço Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica/fisiopatologia , Adenocarcinoma/fisiopatologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Neoplasias Pulmonares/fisiopatologia , Camundongos , Fator de Crescimento Transformador beta/farmacologia
14.
J Biol Chem ; 289(16): 11194-11205, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24627491

RESUMO

Epithelial-mesenchymal transition (EMT) is required for the specification of tissues during embryonic development and is recapitulated during the metastatic progression of tumors. The miR-200 family plays a critical role in enforcing the epithelial state with their expression lost in cells undergoing EMT. EMT can be mediated by activation of the ZEB1 and ZEB2 (ZEB) transcription factors, which repress miR-200 expression via a self-reinforcing double negative feedback loop to promote the mesenchymal state. However, it remains unclear what factors drive and maintain epithelial-specific expression of miR-200 in the absence of EMT-inducing factors. Here, we show that the transcription factor Specificity Protein 1 (Sp1) binds to the miR-200b∼200a∼429 proximal promoter and activates miR-200 expression in epithelial cells. In mesenchymal cells, Sp1 expression is maintained, but its ability to activate the miR-200 promoter is perturbed by ZEB-mediated repression. Reduction of Sp1 expression caused changes in EMT-associated markers in epithelial cells. Furthermore, we observed co-expression of Sp1 and miR-200 during mouse embryonic development wherein miR-200 expression was only lost in regions with high ZEB expression. Together, these findings indicate that miR-200 family members require Sp1 to drive basal expression and to maintain an epithelial state.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , MicroRNAs/biossíntese , Elementos de Resposta/fisiologia , Fator de Transcrição Sp1/metabolismo , Animais , Linhagem Celular Tumoral , Cães , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Células Madin Darby de Rim Canino , Camundongos , MicroRNAs/genética , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Fator de Transcrição Sp1/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
15.
J Cell Sci ; 126(Pt 10): 2256-66, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23525011

RESUMO

The miR-200 family is a key regulator of the epithelial-mesenchymal transition, however, its role in controlling the transition between cancer stem-cell-like and non-stem-cell-like phenotypes is not well understood. We utilized immortalized human mammary epithelial (HMLE) cells to investigate the regulation of the miR-200 family during their conversion to a stem-like phenotype. HMLE cells were found to be capable of spontaneous conversion from a non-stem to a stem-like phenotype and this conversion was accompanied by the loss of miR-200 expression. Stem-like cell fractions isolated from metastatic breast cancers also displayed loss of miR-200 indicating similar molecular changes may occur during breast cancer progression. The phenotypic change observed in HMLE cells was directly controlled by miR-200 because restoration of its expression decreased stem-like properties while promoting a transition to an epithelial phenotype. Investigation of the mechanisms controlling miR-200 expression revealed both DNA methylation and histone modifications were significantly altered in the stem-like and non-stem phenotypes. In particular, in the stem-like phenotype, the miR-200b-200a-429 cluster was silenced primarily through polycomb group-mediated histone modifications whereas the miR-200c-141 cluster was repressed by DNA methylation. These results indicate that the miR-200 family plays a crucial role in the transition between stem-like and non-stem phenotypes and that distinct epigenetic-based mechanisms regulate each miR-200 gene in this process. Therapy targeted against miR-200 family members and epigenetic modifications might therefore be applicable to breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Glândulas Mamárias Humanas/metabolismo , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Linhagem Celular Transformada , Metilação de DNA , Repressão Epigenética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Histonas/metabolismo , Humanos , Glândulas Mamárias Humanas/patologia , Terapia de Alvo Molecular , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Regiões Promotoras Genéticas/genética , Transgenes/genética
16.
Blood ; 122(16): 2911-9, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24009229

RESUMO

Cellular junctions are essential to the normal functioning of the endothelium and control angiogenesis, tissue leak, and inflammation. From a screen of micro RNAs (miRNAs) altered in in vitro angiogenesis, we selected a subset predicted to target junctional molecules. MiR-27a was rapidly downregulated upon stimulation of in vitro angiogenesis, and its level of expression is reduced in neovessels in vivo. The downregulation of miR-27a was essential for angiogenesis because ectopic expression of miR-27a blocked capillary tube formation and angiogenesis. MiR-27a targets the junctional, endothelial-specific cadherin, VE-cadherin. Consistent with this, vascular permeability to vascular endothelial growth factor in mice is reduced by administration of a general miR-27 inhibitor. To determine that VE-cadherin was the dominant target of miR-27a function, we used a novel technology with "Blockmirs," inhibitors that bind to the miR-27 binding site in VE-cadherin. The Blockmir CD5-2 demonstrated specificity for VE-cadherin and inhibited vascular leak in vitro and in vivo. Furthermore, CD5-2 reduced edema, increased capillary density, and potently enhanced recovery from ischemic limb injury in mice. The Blockmir technology offers a refinement in the use of miRNAs, especially for therapy. Further, targeting of endothelial junctional molecules by miRNAs has clinical potential, especially in diseases associated with vascular leak.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Animais , Sítios de Ligação , Permeabilidade Capilar , Edema/patologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Isquemia/patologia , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , Neovascularização Patológica
17.
PLoS Genet ; 8(6): e1002755, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719265

RESUMO

Mitochondrial translation, essential for synthesis of the electron transport chain complexes in the mitochondria, is governed by nuclear encoded genes. Polymorphisms within these genes are increasingly being implicated in disease and may also trigger adverse drug reactions. Statins, a class of HMG-CoA reductase inhibitors used to treat hypercholesterolemia, are among the most widely prescribed drugs in the world. However, a significant proportion of users suffer side effects of varying severity that commonly affect skeletal muscle. The mitochondria are one of the molecular targets of statins, and these drugs have been known to uncover otherwise silent mitochondrial mutations. Based on yeast genetic studies, we identify the mitochondrial translation factor MEF2 as a mediator of atorvastatin toxicity. The human ortholog of MEF2 is the Elongation Factor Gene (EF-G) 2, which has previously been shown to play a specific role in mitochondrial ribosome recycling. Using small interfering RNA (siRNA) silencing of expression in human cell lines, we demonstrate that the EF-G2mt gene is required for cell growth on galactose medium, signifying an essential role for this gene in aerobic respiration. Furthermore, EF-G2mt silenced cell lines have increased susceptibility to cell death in the presence of atorvastatin. Using yeast as a model, conserved amino acid variants, which arise from non-synonymous single nucleotide polymorphisms (SNPs) in the EF-G2mt gene, were generated in the yeast MEF2 gene. Although these mutations do not produce an obvious growth phenotype, three mutations reveal an atorvastatin-sensitive phenotype and further analysis uncovers a decreased respiratory capacity. These findings constitute the first reported phenotype associated with SNPs in the EF-G2mt gene and implicate the human EF-G2mt gene as a pharmacogenetic candidate gene for statin toxicity in humans.


Assuntos
Respiração Celular/genética , Ácidos Heptanoicos/farmacologia , Mitocôndrias/metabolismo , Fator G para Elongação de Peptídeos , Fatores de Alongamento de Peptídeos/genética , Pirróis/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Atorvastatina , Morte Celular/genética , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/genética , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Fator G para Elongação de Peptídeos/fisiologia , Fatores de Alongamento de Peptídeos/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Interferente Pequeno , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
J Allergy Clin Immunol ; 133(5): 1356-64, 1364.e1-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24461581

RESUMO

BACKGROUND: Mast cells have gained notoriety based on their detrimental contributions to IgE-mediated allergic disorders. Although mast cells express the vitamin D receptor (VDR), it is not clear to what extent 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3) or its predominant inactive precursor metabolite in the circulation, 25-hydroxyvitamin D3 (25OHD3), can influence IgE-mediated mast cell activation and passive cutaneous anaphylaxis (PCA) in vivo. OBJECTIVE: We sought to assess whether the vitamin D3 metabolites 25OHD3 and 1α,25(OH)2D3 can repress IgE-dependent mast cell activation through mast cell-25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) and mast cell-VDR activity. METHODS: We measured the extent of vitamin D3 suppression of IgE-mediated mast cell degranulation and mediator production in vitro, as well as the vitamin D3-induced curtailment of PCA responses in WBB6F1-Kit(W/W-v) or C57BL/6J-Kit(W-sh/W-sh) mice engrafted with mast cells that did or did not express VDR or CYP27B1. RESULTS: Here we show that mouse and human mast cells can convert 25OHD3 to 1α,25(OH)2D3 through CYP27B1 activity and that both of these vitamin D3 metabolites suppressed IgE-induced mast cell-derived proinflammatory and vasodilatory mediator production in a VDR-dependent manner in vitro. Furthermore, epicutaneously applied vitamin D3 metabolites significantly reduced the magnitude of skin swelling associated with IgE-mediated PCA reactions in vivo; a response that required functional mast cell-VDRs and mast cell-CYP27B1. CONCLUSION: Taken together, our findings provide a mechanistic explanation for the anti-inflammatory effects of vitamin D3 on mast cell function by demonstrating that mast cells can actively metabolize 25OHD3 to dampen IgE-mediated mast cell activation in vitro and in vivo.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Anafilaxia/metabolismo , Calcifediol/metabolismo , Mastócitos/metabolismo , Receptores de Calcitriol/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Anafilaxia/genética , Anafilaxia/patologia , Animais , Linhagem Celular , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Humanos , Imunoglobulina E , Mastócitos/patologia , Camundongos , Camundongos Knockout , Receptores de Calcitriol/genética
19.
Mol Biol Cell ; 35(2): ar17, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019605

RESUMO

The RNA-binding protein Quaking (QKI) has widespread effects on mRNA regulation including alternative splicing, stability, translation, and localization of target mRNAs. Recently, QKI was found to be induced during epithelial-mesenchymal transition (EMT), where it promotes a mesenchymal alternative splicing signature that contributes to the mesenchymal phenotype. QKI is itself alternatively spliced to produce three major isoforms, QKI-5, QKI-6, and QKI-7. While QKI-5 is primarily localized to the nucleus where it controls mesenchymal splicing during EMT, the functions of the two predominantly cytoplasmic isoforms, QKI-6 and QKI-7, in this context remain uncharacterized. Here we used CRISPR-mediated depletion of QKI in a human mammary epithelial cell model of EMT and studied the effects of expressing the QKI isoforms in isolation and in combination. QKI-5 was required to induce mesenchymal morphology, while combined expression of QKI-5 with either QKI-6 or QKI-7 further enhanced mesenchymal morphology and cell migration. In addition, we found that QKI-6 and QKI-7 can partially localize to the nucleus and contribute to alternative splicing of QKI target genes. These findings indicate that the QKI isoforms function in a dynamic and cooperative manner to promote the mesenchymal phenotype.


Assuntos
Processamento Alternativo , Splicing de RNA , Humanos , Isoformas de Proteínas/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37536977

RESUMO

Epithelial-mesenchymal transition is essential for tissue patterning and organization. It involves both regulation of cell motility and alterations in the composition and organization of the ECM-a complex environment of proteoglycans and fibrous proteins essential for tissue homeostasis, signaling in response to chemical and biomechanical stimuli, and is often dysregulated under conditions such as cancer, fibrosis, and chronic wounds. Here, we demonstrate that basonuclin-2 (BNC2), a mesenchymal-expressed gene, that is, strongly associated with cancer and developmental defects across genome-wide association studies, is a novel regulator of ECM composition and degradation. We find that at endogenous levels, BNC2 controls the expression of specific collagens, matrix metalloproteases, and other matrisomal components in breast cancer cells, and in fibroblasts that are primarily responsible for the production and processing of the ECM within the tumour microenvironment. In so doing, BNC2 modulates the motile and invasive properties of cancers, which likely explains the association of high BNC2 expression with increasing cancer grade and poor patient prognosis.


Assuntos
Proteínas de Ligação a DNA , Estudo de Associação Genômica Ampla , Neoplasias , Humanos , Colágeno/metabolismo , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/genética , Proteínas de Ligação a DNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA