Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(2): 571-575, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052763

RESUMO

Hazardous properties of a large number of esters of 4-hydroxybenzoic acid (parabens) have been proposed by ECHA to be assessed as a group. We recommend to restrict the grouping approach to short chain esters, i.e. methyl, ethyl, propyl and butyl paraben which are very similar in chemical structures, physicochemical properties, toxicokinetics, and hazardous properties. While these parabens show a weak estrogenicity in some in vitro or in vivo screening assays, they do not induce estrogen-receptor-mediated adverse effects in intact animals. Therefore, there is no support regarding classification and labeling of endocrine disruption or reproductive toxicity of these parabens.


Assuntos
Ésteres , Parabenos , Animais , Parabenos/toxicidade , Parabenos/química , Ésteres/toxicidade , Sistema Endócrino , Receptores de Estrogênio
2.
Arch Toxicol ; 97(6): 1813-1822, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37029818

RESUMO

The 1958 Delaney amendment to the Federal Food Drug and Cosmetics Act prohibited food additives causing cancer in animals by appropriate tests. Regulators responded by adopting chronic lifetime cancer tests in rodents, soon challenged as inappropriate, for they led to very inconsistent results depending on the subjective choice of animals, test design and conduct, and interpretive assumptions. Presently, decades of discussions and trials have come to conclude it is impossible to translate chronic animal data into verifiable prospects of cancer hazards and risks in humans. Such conclusion poses an existential crisis for official agencies in the US and abroad, which for some 65 years have used animal tests to justify massive regulations of alleged human cancer hazards, with aggregated costs of $trillions and without provable evidence of public health advantages. This article addresses suitable remedies for the US and potentially worldwide, by critically exploring the practices of regulatory agencies vis-á-vis essential criteria for validating scientific evidence. According to this analysis, regulations of alleged cancer hazards and risks have been and continue to be structured around arbitrary default assumptions at odds with basic scientific and legal tests of reliable evidence. Such practices raise a manifold ethical predicament for being incompatible with basic premises of the US Constitution, and with the ensuing public expectations of testable truth and transparency from government agencies. Potential remedies in the US include amendments to the US Administrative Procedures Act, preferably requiring agencies to justify regulations compliant with the Daubert opinion of the Daubert ruling of the US Supreme Court, which codifies the criteria defining reliable scientific evidence. International reverberations are bound to follow what remedial actions may be taken in the US, the origin of current world regulatory procedures to control alleged cancer causing agents.


Assuntos
Neoplasias , Saúde Pública , Animais , Humanos , Estados Unidos , Carcinógenos/toxicidade , Neoplasias/induzido quimicamente , Neoplasias/prevenção & controle
3.
Regul Toxicol Pharmacol ; 139: 105356, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758784

RESUMO

A fully integrated Chemicals Strategy for Sustainability (CSS) in respect of chemicals is crucial and must include: • An objective evaluation of the present situation including impacts of 'chemicals of concern' throughout their life cycle, that incorporates sustainability issues. • A framework that facilitates innovation of chemistry-based approaches to tackle each of the key sustainability issues. The EU CSS only addresses adverse impacts and mainly focusses on one aspect of risk assessment, the hazard to humans from individual industrial chemicals. The proposal removes consideration of the nature and amount of exposure, which is a critical determinant of risk. It can be presumed that this is solely to simplify, and hence speed up, regulatory decisions thereby enabling more chemicals to be assessed. The linkage of this proposed approach to address any of the major sustainability issues, such as environmental pollutants is obscure. For example, the well-recognised environmental problems caused by polymers such as plastics are not considered. The proposed change in the assessment methodology lacks any scientific justification and fails to address the sustainability issues the EU and the rest of the world are facing. The authors critically discuss a comprehensive innovative evaluation methodology for the impact of chemicals.


Assuntos
Poluentes Ambientais , Humanos , Medição de Risco
4.
Mutagenesis ; 37(1): 13-23, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35302169

RESUMO

BlueScreen HC is a mammalian cell-based assay for measuring the genotoxicity and cytotoxicity of chemical compounds and mixtures. The BlueScreen HC assay has been utilized at the Research Institute for Fragrance Materials in a safety assessment program as a screening tool to prioritize fragrance materials for higher-tier testing, as supporting evidence when using a read-across approach, and as evidence to adjust the threshold of toxicological concern. Predictive values for the BlueScreen HC assay were evaluated based on the ability of the assay to predict the outcome of in vitro and in vivo mutagenicity and chromosomal damage genotoxicity assays. A set of 371 fragrance materials was assessed in the BlueScreen HC assay along with existing or newly generated in vitro and in vivo genotoxicity data. Based on a weight-of-evidence approach, the majority of materials in the data set were deemed negative and concluded not to have the potential to be genotoxic, while only a small proportion of materials were determined to show genotoxic effects in these assays. Analysis of the data set showed a combination of high positive agreement but low negative agreement between BlueScreen HC results, in vitro regulatory genotoxicity assays, and higher-tier test results. The BlueScreen HC assay did not generate any false negatives, thereby providing robustness when utilizing it as a high-throughput screening tool to evaluate the large inventory of fragrance materials. From the perspective of protecting public health, it is desirable to have no or minimal false negatives, as a false-negative result may incorrectly indicate the lack of a genotoxicity hazard. However, the assay did have a high percentage of false-positive results, resulting in poor positive predictivity of the in vitro genotoxicity test battery outcome. Overall, the assay generated 100% negative predictivity and 3.9% positive predictivity. In addition to the data set of 371 fragrance materials, 30 natural complex substances were evaluated for BlueScreen HC, Ames, and in vitro micronucleus assay, and a good correlation in all three assays was observed. Overall, while a positive result may have to be further investigated, these findings suggest that the BlueScreen HC assay can be a valuable screening tool to detect the genotoxic potential of fragrance materials and mixtures.


Assuntos
Dano ao DNA , Odorantes , Animais , Bioensaio/métodos , Mamíferos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade
5.
Arch Toxicol ; 95(9): 3133-3136, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34363510

RESUMO

The EU chemicals strategy for sustainability (CSS) asserts that both human health and the environment are presently threatened and that further regulation is necessary. In a recent Guest Editorial, members of the German competent authority for risk assessment, the BfR, raised concerns about the scientific justification for this strategy. The complexity and interdependence of the networks of regulation of chemical substances have ensured that public health and wellbeing in the EU have continuously improved. A continuous process of improvement in consumer protection is clearly desirable but any initiative directed towards this objective must be based on scientific knowledge. It must not confound risk with other factors in determining policy. This conclusion is fully supported in the present Commentary including the request to improve both, data collection and the time-consuming and bureaucratic procedures that delay the publication of regulations.


Assuntos
Saúde Pública/legislação & jurisprudência , Medição de Risco/legislação & jurisprudência , União Europeia , Substâncias Perigosas/toxicidade , Política de Saúde/legislação & jurisprudência , Humanos
6.
Crit Rev Toxicol ; 50(1): 72-95, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32133908

RESUMO

The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) organized a workshop "Hazard Identification, Classification and Risk Assessment of Carcinogens: Too Much or Too Little?" to explore the scientific limitations of the current binary carcinogenicity classification scheme that classifies substances as either carcinogenic or not. Classification is often based upon the rodent 2-year bioassay, which has scientific limitations and is not necessary to predict whether substances are likely human carcinogens. By contrast, tiered testing strategies founded on new approach methodologies (NAMs) followed by subchronic toxicity testing, as necessary, are useful to determine if a substance is likely carcinogenic, by which mode-of-action effects would occur and, for non-genotoxic carcinogens, the dose levels below which the key events leading to carcinogenicity are not affected. Importantly, the objective is not for NAMs to mimic high-dose effects recorded in vivo, as these are not relevant to human risk assessment. Carcinogenicity testing at the "maximum tolerated dose" does not reflect human exposure conditions, but causes major disturbances of homeostasis, which are very unlikely to occur at relevant human exposure levels. The evaluation of findings should consider biological relevance and not just statistical significance. Using this approach, safe exposures to non-genotoxic substances can be established.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Carcinógenos/classificação , Ecotoxicologia , Humanos , Medição de Risco/métodos
7.
Arch Toxicol ; 94(7): 2549-2557, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32514609

RESUMO

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Assuntos
Exposição Dietética/efeitos adversos , Disruptores Endócrinos/efeitos adversos , Sistema Endócrino/efeitos dos fármacos , Compostos Fitoquímicos/efeitos adversos , Testes de Toxicidade , Animais , Disruptores Endócrinos/síntese química , Sistema Endócrino/metabolismo , Sistema Endócrino/fisiopatologia , Humanos , Ligantes , Medição de Risco
8.
J Toxicol Environ Health A ; 83(13-14): 485-494, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32552445

RESUMO

Theoretically, both synthetic endocrine-disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine-disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower than S-EDCs. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea, and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Assuntos
Disruptores Endócrinos/síntese química , Disruptores Endócrinos/toxicidade , Exposição Ambiental/análise , Disruptores Endócrinos/metabolismo , Sistema Endócrino/efeitos dos fármacos , Sistema Endócrino/fisiologia , Exposição Ambiental/estatística & dados numéricos , Retroalimentação Fisiológica/efeitos dos fármacos , Hormônios/metabolismo , Humanos , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Medição de Risco , Testes de Toxicidade/normas
9.
Regul Toxicol Pharmacol ; 118: 104805, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33075411

RESUMO

In 2008, a proposal for assessing the risk of induction of skin sensitization to fragrance materials Quantitative Risk Assessment 1 (QRA1) was published. This was implemented for setting maximum limits for fragrance materials in consumer products. However, there was no formal validation or empirical verification after implementation. Additionally, concerns remained that QRA1 did not incorporate aggregate exposure from multiple product use and included assumptions, e.g. safety assessment factors (SAFs), that had not been critically reviewed. Accordingly, a review was undertaken, including detailed re-evaluation of each SAF together with development of an approach for estimating aggregate exposure of the skin to a potential fragrance allergen. This revision of QRA1, termed QRA2, provides an improved method for establishing safe levels for sensitizing fragrance materials in multiple products to limit the risk of induction of contact allergy. The use of alternative non-animal methods is not within the scope of this paper. Ultimately, only longitudinal clinical studies can verify the utility of QRA2 as a tool for the prevention of contact allergy to fragrance materials.


Assuntos
Alérgenos/toxicidade , Dermatite Alérgica de Contato/etiologia , Odorantes , Testes de Irritação da Pele , Pele/efeitos dos fármacos , Alérgenos/análise , Qualidade de Produtos para o Consumidor , Dermatite Alérgica de Contato/imunologia , Dermatite Alérgica de Contato/prevenção & controle , Relação Dose-Resposta a Droga , Humanos , Medição de Risco , Pele/imunologia
10.
Arch Toxicol ; 93(9): 2483-2490, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31410529

RESUMO

Emissions from diesel engines contain several hundred chemical compounds, which are emitted partly as gas and partly as particles. The composition of diesel exhaust and its concentrations in air has changed significantly over time, to the extent that now there is a distinction between "traditional" and "new technology" diesel emissions. New technology diesel engines comply with emissions from EURO 3 vehicles and higher. Starting with EURO 5, a significant further reduction of particle emissions has been achieved by increased temperature, which, however, lead to increased emissions of NOx and exceeded the NO2 emission limit. To overcome this problem, some car manufacturers installed illegal software that detected the vehicle test bench operation, resulting in low emissions during the test cycle. Detection of such devices in 2015 led to the "Diesel scandal". In 2017 the worldwide harmonized light vehicles test procedure (WLTP) was introduced for new cars, which simulates emissions under different driving conditions. It became mandatory for certification of all new vehicles by September 2018. In addition, fleet CO2 emissions have been introduced for all cars, requiring that by 2020 95% of each manufacturer's passenger car must meet the CO2 emission target of 95 mg/km, and by 2021 100% of the fleet. All these regulations significantly reduced the emissions of diesel- and gasoline-driven cars, which since the introduction of the EURO 6 regulation in 2014 are almost similar for both. Since the energy efficiency of diesel motors is up to 20% higher than that of gasoline-driven cars resulting in up to 20% lower CO2 emission, there is no reason to question the future use of diesel engines. These regulations apply for new cars. However, air concentrations at sampling points close to streets with high traffic still exceed the limit values especially for NO2. In several cities this led to restrictions for passenger cars of EURO 5 and below. Since concentrations close to streets are not relevant to evaluate the long-term exposure of the population, these measures are highly debatable.


Assuntos
Poluentes Atmosféricos/toxicidade , Automóveis/normas , Monitoramento Ambiental/métodos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Poluição do Ar , Condução de Veículo/normas , Humanos , Emissões de Veículos/prevenção & controle
11.
Regul Toxicol Pharmacol ; 105: 1-14, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30905765

RESUMO

The carcinogenic potential of a non-genotoxic pyrethroid imiprothrin was examined in rats and mice. There was no carcinogenicity in rats up to a maximum dose of 5000 ppm of the diet. There was a higher (p = 0.03) incidence of lung adenocarcinomas at 7000 ppm in males, and females showed an increasing (p < 0.01) trend in the incidence of lung adenomas and combined lung adenoma/adenocarcinomas. Additional step sections of lung demonstrated no significant increases in any tumor at p < 0.05, although an increasing trend with dose was observed among females. We argue that, the 7000 ppm dose exceeded the Maximum Tolerated Dose (MTD) for both sexes, based on systemic toxicity as evidenced by body weight gain reduction (both sexes) and high mortality (females). If the 7000 ppm dose is therefore removed from consideration, there are not significant (p < 0.05) increases in tumor formation. Moreover, a consideration of multiple comparisons reveals that the lung tumor increases observed are totally consistent with what would be expected by chance alone. Based on high susceptibility of this mouse strain for the appearance of lung tumors and the lack of a statistically significant increase in tumors by appropriate analysis, the mouse study does not indicate a carcinogenic effect of imiprothrin, and thus no classification for carcinogenicity is warranted.


Assuntos
Adenocarcinoma/induzido quimicamente , Adenoma/induzido quimicamente , Neoplasias Pulmonares/induzido quimicamente , Praguicidas/toxicidade , Piretrinas/toxicidade , Adenocarcinoma/epidemiologia , Adenoma/epidemiologia , Animais , Testes de Carcinogenicidade/métodos , Dieta , Relação Dose-Resposta a Droga , Feminino , Neoplasias Pulmonares/epidemiologia , Masculino , Dose Máxima Tolerável , Camundongos , Camundongos Endogâmicos ICR , Piretrinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Especificidade da Espécie
12.
Regul Toxicol Pharmacol ; 106: 210-223, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31059732

RESUMO

Anticipating the need to evaluate and integrate scientific evidence to inform new risk assessments or to update existing risk assessments, the Formaldehyde Panel of the American Chemistry Council (ACC), in collaboration with the University of North Carolina, convened a workshop: "Understanding Potential Human Health Cancer Risk - From Data Integration to Risk Evaluation" in October 2017. Twenty-four (24) invited-experts participated with expertise in epidemiology, toxicology, science integration and risk evaluation. Including members of the organizing committee, there were 29 participants. The meeting included eleven presentations encompassing an introduction and three sessions: (1) "integrating the formaldehyde science on nasal/nasopharyngeal carcinogenicity and potential for causality"; (2) "integrating the formaldehyde science on lymphohematopoietic cancer and potential for causality; and, (3) "formaldehyde research-data suitable for risk assessment". Here we describe key points from the presentations on epidemiology, toxicology and mechanistic studies that should inform decisions about the potential carcinogenicity of formaldehyde in humans and the discussions about approaches for structuring an integrated, comprehensive risk assessment for formaldehyde. We also note challenges expected when attempting to reconcile divergent results observed from research conducted within and across different scientific disciplines - especially toxicology and epidemiology - and in integrating diverse, multi-disciplinary mechanistic evidence.


Assuntos
Formaldeído/efeitos adversos , Comunicação Interdisciplinar , Animais , Humanos , Medição de Risco
13.
Regul Toxicol Pharmacol ; 98: 199-208, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30076866

RESUMO

Chronic stimulation of the thyroid gland of rodents by TSH leads to thyroid follicular hyperplasia and subsequently to thyroid follicular adenomas and carcinomas. However, the interpretations of rodent thyroid tumors are contradictory. The U.S. Food and Drug Administration (FDA) concluded that findings with drugs that lead to increased levels of thyroid-stimulating hormone (TSH) in rats are not relevant to humans, whereas the U.S. Environmental Protection Agency (US EPA) concluded that chemicals that produce rodent thyroid tumors may pose a carcinogenic hazard for humans although the thyroid of rodents appears to be more sensitive to a carcinogenic stimulus than that of humans. Meanwhile, based on the CLP Criteria of the European Chemicals Agency (ECHA), rodent thyroid tumors caused by the induction of uridine-diphosphate-glucuronosyl transferases (UDGT) were assessed as not relevant to humans. To clarify these discrepant positions, the function and regulation of the thyroid gland are described and the types of thyroid tumors and the causes of their development in humans and animals are examined. Based on these data and the evidence that so far, except radiation, no chemical is known to increase the incidence of thyroid tumors in humans, it is concluded that rodent thyroid tumors resulting from continuous stimulation of the thyroid gland by increased TSH levels are not relevant to humans. Consequently, compounds that induce such tumors do not warrant classification as carcinogenic.


Assuntos
Carcinógenos/toxicidade , Neoplasias da Glândula Tireoide/etiologia , Tireotropina/metabolismo , Animais , Humanos , Especificidade da Espécie , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/fisiologia
15.
Regul Toxicol Pharmacol ; 97: A1-A3, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30017904

RESUMO

Several recent and prominent articles in Science and Nature deliberately mischaracterized the nature of genuine scientific evidence. Those articles take issue with the United States Environmental Protection Agency's recent proposal to structure its policies and rules only from studies with transparently published raw data. The articles claim it is an effort to obfuscate with transparency, by eliminating a host of studies not offering raw data. A remarkable declaration by a Science editorial is that properly trained experts can verify the scientific evidence of studies without access to raw data, We assert the Agency's proposal must be sustained. Transparency in reporting is a fundamental ethical imperative of objective scientific research justifying massive official regulations and policies. Putative hazards bereft of independent scientific evidence will continue to stoke public anxieties, calling for precautionary regulations and policies. These should rely not on spurious science but on transparent tradeoffs between the smallest exposures compatible with utility and with social perceptions of affordable precaution.


Assuntos
Órgãos Governamentais/organização & administração , Formulação de Políticas , Animais , Humanos , Estados Unidos , United States Environmental Protection Agency
16.
Arch Toxicol ; 91(2): 1001-1006, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27714423

RESUMO

Endocrine disruption is a specific form of toxicity, where natural and/or anthropogenic chemicals, known as "endocrine disruptors" (EDs), trigger adverse health effects by disrupting the endogenous hormone system. There is need to harmonize guidance on the regulation of EDs, but this has been hampered by what appeared as a lack of consensus among scientists. This publication provides summary information about a consensus reached by a group of world-leading scientists that can serve as the basis for the development of ED criteria in relevant EU legislation. Twenty-three international scientists from different disciplines discussed principles and open questions on ED identification as outlined in a draft consensus paper at an expert meeting hosted by the German Federal Institute for Risk Assessment (BfR) in Berlin, Germany on 11-12 April 2016. Participants reached a consensus regarding scientific principles for the identification of EDs. The paper discusses the consensus reached on background, definition of an ED and related concepts, sources of uncertainty, scientific principles important for ED identification, and research needs. It highlights the difficulty in retrospectively reconstructing ED exposure, insufficient range of validated test systems for EDs, and some issues impacting on the evaluation of the risk from EDs, such as non-monotonic dose-response and thresholds, modes of action, and exposure assessment. This report provides the consensus statement on EDs agreed among all participating scientists. The meeting facilitated a productive debate and reduced a number of differences in views. It is expected that the consensus reached will serve as an important basis for the development of regulatory ED criteria.


Assuntos
Ecotoxicologia/legislação & jurisprudência , Disruptores Endócrinos/toxicidade , Animais , União Europeia , Regulamentação Governamental , Humanos , Medição de Risco/legislação & jurisprudência
17.
Crit Rev Toxicol ; 46(sup1): 44-55, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27677669

RESUMO

Glyphosate has been rigorously and extensively tested for carcinogenicity by administration to mice (five studies) and to rats (nine studies). Most authorities have concluded that the evidence does not indicate a cancer risk to humans. The International Agency for Research on Cancer (IARC), however, evaluated some of the available data and concluded that glyphosate probably is carcinogenic to humans. The expert panel convened by Intertek assessed the findings used by IARC, as well as the full body of evidence and found the following: (1) the renal neoplastic effects in males of one mouse study are not associated with glyphosate exposure, because they lack statistical significance, strength, consistency, specificity, lack a dose-response pattern, plausibility, and coherence; (2) the strength of association of liver hemangiosarcomas in a different mouse study is absent, lacking consistency, and a dose-response effect and having in high dose males only a significant incidence increase which is within the historical control range; (3) pancreatic islet-cell adenomas (non-significant incidence increase), in two studies of male SD rats did not progress to carcinomas and lacked a dose-response pattern (the highest incidence is in the low dose followed by the high dose); (4) in one of two studies, a non-significant positive trend in the incidence of hepatocellular adenomas in male rats did not lead to progression to carcinomas; (5) in one of two studies, the non-significant positive trend in the incidence of thyroid C-cell adenomas in female rats was not present and there was no progression of adenomas to carcinomas at the end of the study. Application of criteria for causality considerations to the above mentioned tumor types and given the overall weight-of-evidence (WoE), the expert panel concluded that glyphosate is not a carcinogen in laboratory animals.

18.
Crit Rev Toxicol ; 46(sup1): 3-20, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27677666

RESUMO

The International Agency for Research on Cancer (IARC) published a monograph in 2015 concluding that glyphosate is "probably carcinogenic to humans" (Group 2A) based on limited evidence in humans and sufficient evidence in experimental animals. It was also concluded that there was strong evidence of genotoxicity and oxidative stress. Four Expert Panels have been convened for the purpose of conducting a detailed critique of the evidence in light of IARC's assessment and to review all relevant information pertaining to glyphosate exposure, animal carcinogenicity, genotoxicity, and epidemiologic studies. Two of the Panels (animal bioassay and genetic toxicology) also provided a critique of the IARC position with respect to conclusions made in these areas. The incidences of neoplasms in the animal bioassays were found not to be associated with glyphosate exposure on the basis that they lacked statistical strength, were inconsistent across studies, lacked dose-response relationships, were not associated with preneoplasia, and/or were not plausible from a mechanistic perspective. The overall weight of evidence from the genetic toxicology data supports a conclusion that glyphosate (including GBFs and AMPA) does not pose a genotoxic hazard and therefore, should not be considered support for the classification of glyphosate as a genotoxic carcinogen. The assessment of the epidemiological data found that the data do not support a causal relationship between glyphosate exposure and non-Hodgkin's lymphoma while the data were judged to be too sparse to assess a potential relationship between glyphosate exposure and multiple myeloma. As a result, following the review of the totality of the evidence, the Panels concluded that the data do not support IARC's conclusion that glyphosate is a "probable human carcinogen" and, consistent with previous regulatory assessments, further concluded that glyphosate is unlikely to pose a carcinogenic risk to humans.

19.
Regul Toxicol Pharmacol ; 82: 127-139, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27663666

RESUMO

The European Centre for the Ecotoxicology and Toxicology of Chemicals (ECETOC) organised a workshop to discuss the state-of-the-art research on noncoding RNAs (ncRNAs) as biomarkers in regulatory toxicology and as analytical and therapeutic agents. There was agreement that ncRNA expression profiling data requires careful evaluation to determine the utility of specific ncRNAs as biomarkers. To advance the use of ncRNA in regulatory toxicology, the following research priorities were identified: (1) Conduct comprehensive literature reviews to identify possibly suitable ncRNAs and areas of toxicology where ncRNA expression profiling could address prevailing scientific deficiencies. (2) Develop consensus on how to conduct ncRNA expression profiling in a toxicological context. (3) Conduct experimental projects, including, e.g., rat (90-day) oral toxicity studies, to evaluate the toxicological relevance of the expression profiles of selected ncRNAs. Thereby, physiological ncRNA expression profiles should be established, including the biological variability of healthy individuals. To substantiate the relevance of key ncRNAs for cell homeostasis or pathogenesis, molecular events should be dose-dependently linked with substance-induced apical effects. Applying a holistic approach, knowledge on ncRNAs, 'omics and epigenetics technologies should be integrated into adverse outcome pathways to improve the understanding of the functional roles of ncRNAs within a regulatory context.


Assuntos
RNA não Traduzido/genética , Testes de Toxicidade/métodos , Toxicologia/métodos , Animais , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Genômica , Humanos , Modelos Animais , RNA não Traduzido/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo
20.
Crit Rev Toxicol ; 45(3): 185-208, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25716480

RESUMO

Abstract Glyphosate, an herbicidal derivative of the amino acid glycine, was introduced to agriculture in the 1970s. Glyphosate targets and blocks a plant metabolic pathway not found in animals, the shikimate pathway, required for the synthesis of aromatic amino acids in plants. After almost forty years of commercial use, and multiple regulatory approvals including toxicology evaluations, literature reviews, and numerous human health risk assessments, the clear and consistent conclusions are that glyphosate is of low toxicological concern, and no concerns exist with respect to glyphosate use and cancer in humans. This manuscript discusses the basis for these conclusions. Most toxicological studies informing regulatory evaluations are of commercial interest and are proprietary in nature. Given the widespread attention to this molecule, the authors gained access to carcinogenicity data submitted to regulatory agencies and present overviews of each study, followed by a weight of evidence evaluation of tumor incidence data. Fourteen carcinogenicity studies (nine rat and five mouse) are evaluated for their individual reliability, and select neoplasms are identified for further evaluation across the data base. The original tumor incidence data from study reports are presented in the online data supplement. There was no evidence of a carcinogenic effect related to glyphosate treatment. The lack of a plausible mechanism, along with published epidemiology studies, which fail to demonstrate clear, statistically significant, unbiased and non-confounded associations between glyphosate and cancer of any single etiology, and a compelling weight of evidence, support the conclusion that glyphosate does not present concern with respect to carcinogenic potential in humans.


Assuntos
Carcinógenos/toxicidade , Glicina/análogos & derivados , Animais , Testes de Carcinogenicidade , Carcinógenos/farmacocinética , Cães , Glicina/farmacocinética , Glicina/toxicidade , Humanos , Camundongos , Testes de Mutagenicidade , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/epidemiologia , Ratos , Roedores , Distribuição Tecidual , Testes de Toxicidade Crônica , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA