Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 143(11): 1006-1017, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38142424

RESUMO

ABSTRACT: Systemic mastocytosis (SM) is defined by the expansion and accumulation of neoplastic mast cells (MCs) in the bone marrow (BM) and extracutaneous organs. Most patients harbor a somatic KIT D816V mutation, which leads to growth factor-independent KIT activation and accumulation of MC. Tumor necrosis factor α (TNF) is a proapoptotic and inflammatory cytokine that has been implicated in the clonal selection of neoplastic cells. We found that KIT D816V increases the expression and secretion of TNF. TNF expression in neoplastic MCs is reduced by KIT-targeting drugs. Similarly, knockdown of KIT or targeting the downstream signaling cascade of MAPK and NF-κB signaling reduced TNF expression levels. TNF reduces colony formation in human BM cells, whereas KIT D816V+ cells are less susceptible to the cytokine, potentially contributing to clonal selection. In line, knockout of TNF in neoplastic MC prolonged survival and reduced myelosuppression in a murine xenotransplantation model. Mechanistic studies revealed that the relative resistance of KIT D816V+ cells to TNF is mediated by the apoptosis-regulator BIRC5 (survivin). Expression of BIRC5 in neoplastic MC was confirmed by immunohistochemistry of samples from patients with SM. TNF serum levels are significantly elevated in patients with SM and high TNF levels were identified as a biomarker associated with inferior survival. We here characterized TNF as a KIT D816V-dependent cytokine that promotes clonal dominance. We propose TNF and apoptosis-associated proteins as potential therapeutic targets in SM.


Assuntos
Mastocitose Sistêmica , Mastocitose , Humanos , Animais , Camundongos , Fator de Necrose Tumoral alfa , Survivina/genética , Prognóstico , Mastocitose Sistêmica/diagnóstico , Mastocitose Sistêmica/genética , Citocinas
2.
Am J Hematol ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822666

RESUMO

Acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) are life-threatening hematopoietic malignancies characterized by clonal expansion of leukemic blasts in the bone marrow and peripheral blood. The epigenetic reader BRD4 and its downstream effector MYC have recently been identified as potential drug targets in human AML and ALL. We compared anti-leukemic efficacies of the small-molecule BET inhibitor JQ1 and the recently developed BRD4 degraders dBET1 and dBET6 in AML and ALL cells. JQ1, dBET1, and dBET6 were found to suppress growth and viability in all AML and ALL cell lines examined as well as in primary patient-derived AML and ALL cells, including CD34+/CD38- and CD34+/CD38+ leukemic stem and progenitor cells, independent of the type (variant) of leukemia or molecular driver expressed in leukemic cells. Moreover, we found that dBET6 overcomes osteoblast-induced drug resistance in AML and ALL cells, regardless of the type of leukemia or the drug applied. Most promising cooperative or even synergistic drug combination effects were seen with dBET6 and the FLT3 ITD blocker gilteritinib in FLT3 ITD-mutated AML cells, and with dBET6 and the multi-kinase blocker ponatinib in BCR::ABL1+ ALL cells. Finally, all BRD4-targeting drugs suppressed interferon-gamma- and tumor necrosis factor-alpha-induced expression of the resistance-related checkpoint antigen PD-L1 in AML and ALL cells, including LSC. In all assays examined, the BRD4 degrader dBET6 was a superior anti-leukemic drug compared with dBET1 and JQ1. Together, BRD4 degraders may provide enhanced inhibition of multiple mechanisms of therapy resistance in AML and ALL.

3.
Mol Cancer ; 22(1): 133, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573301

RESUMO

Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/farmacologia , Recidiva Local de Neoplasia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
4.
Blood ; 137(2): 238-247, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-32777817

RESUMO

Mastocytosis is a hematopoietic neoplasm characterized by expansion of KIT D816V-mutated clonal mast cells in various organs and severe or even life-threatening anaphylactic reactions. Recently, hereditary α-tryptasemia (HαT) has been described as a common genetic trait with increased copy numbers of the α-tryptase encoding gene, TPSAB1, and associated with an increased basal serum tryptase level and a risk of mast cell activation. The purpose of our study was to elucidate the clinical relevance of HαT in patients with mastocytosis. TPSAB1 germline copy number variants were assessed by digital polymerase chain reaction in 180 mastocytosis patients, 180 sex-matched control subjects, 720 patients with other myeloid neoplasms, and 61 additional mastocytosis patients of an independent validation cohort. α-Tryptase encoding TPSAB1 copy number gains, compatible with HαT, were identified in 17.2% of mastocytosis patients and 4.4% of the control population (P < .001). Patients with HαT exhibited higher tryptase levels than patients without HαT (median tryptase in HαT+ cases: 49.6 ng/mL vs HαT- cases: 34.5 ng/mL, P = .004) independent of the mast cell burden. Hymenoptera venom hypersensitivity reactions and severe cardiovascular mediator-related symptoms/anaphylaxis were by far more frequently observed in mastocytosis patients with HαT than in those without HαT. Results were confirmed in an independent validation cohort. The high prevalence of HαT in mastocytosis hints at a potential pathogenic role of germline α-tryptase encoding TPSAB1 copy number gains in disease evolution. Together, our data suggest that HαT is a novel emerging robust biomarker in mastocytosis that is useful for determining the individual patient´s risk of developing severe anaphylaxis.


Assuntos
Mastocitose , Triptases/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Variações do Número de Cópias de DNA , Feminino , Marcadores Genéticos , Humanos , Masculino , Mastocitose/sangue , Mastocitose/genética , Pessoa de Meia-Idade , Triptases/sangue , Adulto Jovem
5.
Eur J Haematol ; 110(1): 67-76, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36193973

RESUMO

BACKGROUND: The SARS-COV-2 (Covid-19) pandemic has impacted the management of patients with hematologic disorders. In some entities, an increased risk for Covid-19 infections was reported, whereas others including chronic myeloid leukemia (CML) had a lower mortality. We have analyzed the prevalence of Covid-19 infections in patients with mastocytosis during the Covid-19 pandemic in comparison to data from CML patients and the general Austrian population. MATERIALS AND METHODS: The prevalence of infections and PCR-proven Covid-19 infections was analyzed in 92 patients with mastocytosis. As controls, we used 113 patients with CML and the expected prevalence of Covid-19 in the general Austrian population. RESULTS: In 25% of the patients with mastocytosis (23/92) signs and symptoms of infection, including fever (n = 11), dry cough (n = 10), sore throat (n = 12), pneumonia (n = 1), and dyspnea (n = 3) were recorded. Two (8.7%) of these symptomatic patients had a PCR-proven Covid-19 infection. Thus, the prevalence of Covid-19 infections in mastocytosis was 2.2%. The number of comorbidities, subtype of mastocytosis, regular exercise, smoking habits, age, or duration of disease at the time of interview did not differ significantly between patients with and without Covid-19 infections. In the CML cohort, 23.9% (27/113) of patients reported signs and symptoms of infection (fever, n = 8; dry cough, n = 17; sore throat, n = 11; dyspnea, n = 5). Six (22.2%) of the symptomatic patients had a PCR-proven Covid-19 infection. The prevalence of Covid-19 in all CML patients was 5.3%. The observed number of Covid-19 infections neither in mastocytosis nor in CML patients differed significantly from the expected number of Covid-19 infections in the Austrian population. CONCLUSIONS: Our data show no significant difference in the prevalence of Covid-19 infections among patients with mastocytosis, CML, and the general Austrian population and thus, in mastocytosis, the risk of a Covid-19 infection was not increased compared to the general population.


Assuntos
COVID-19 , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Mastocitose , Faringite , Humanos , COVID-19/complicações , COVID-19/epidemiologia , Pandemias , SARS-CoV-2 , Incidência , Tosse , Áustria/epidemiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/complicações , Leucemia Mielogênica Crônica BCR-ABL Positiva/epidemiologia , Febre , Dispneia
6.
Am J Hematol ; 98(2): 290-299, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588398

RESUMO

Patient-related factors are of prognostic importance in acute myeloid leukemia (AML). Likewise, cardiac disorders may limit the tolerance of intensive therapy. Little is known about the prognostic value of N-terminal pro-brain natriuretic peptide (NT-proBNP). We analyzed NT-proBNP levels at diagnosis in 312 AML patients (median age: 61 years; range 17-89 years) treated with 3 + 7-based induction-chemotherapy and consolidation with up to four cycles of intermediate or high-dose ARA-C. NT-proBNP levels were elevated in 199 patients (63.8%), normal (0-125 pg/ml) in 113 (36.2%), and highly elevated (>2000 pg/ml) in 20 patients (6.4%). Median NT-proBNP levels differed significantly among patients with complete remission (153.3 pg/ml), no remission (225.9 pg/ml), or early death (735.5 pg/ml) (p = .002). In multivariate analysis, NT-proBNP, age, and the 2009 European LeukemiaNet (ELN-2009) classification were independent predictors of outcome after induction chemotherapy. Overall survival (OS) differed significantly between patients with normal, moderately elevated, and highly elevated NT-proBNP (p < .001). These differences were observed in all patients and in patients <60 years but not in those ≥60 years. In multivariate analysis, NT-proBNP, age, and ELN-2009 remained independent prognostic variables for OS (p < .01). Together, NT-proBNP is an independent prognostic factor indicating the risk of induction failure, early death, and reduced OS in patients with AML.


Assuntos
Cardiopatias , Leucemia Mieloide Aguda , Humanos , Pessoa de Meia-Idade , Prognóstico , Biomarcadores , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Leucemia Mieloide Aguda/tratamento farmacológico
7.
Am J Hematol ; 98(5): 770-783, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36814396

RESUMO

Myeloproliferative neoplasms (MPN) are characterized by uncontrolled expansion of myeloid cells, disease-related mutations in certain driver-genes including JAK2, CALR, and MPL, and a substantial risk to progress to secondary acute myeloid leukemia (sAML). Although behaving as stem cell neoplasms, little is known about disease-initiating stem cells in MPN. We established the phenotype of putative CD34+ /CD38- stem cells and CD34+ /CD38+ progenitor cells in MPN. A total of 111 patients with MPN suffering from polycythemia vera, essential thrombocythemia, or primary myelofibrosis (PMF) were examined. In almost all patients tested, CD34+ /CD38- stem cells expressed CD33, CD44, CD47, CD52, CD97, CD99, CD105, CD117, CD123, CD133, CD184, CD243, and CD274 (PD-L1). In patients with PMF, MPN stem cells often expressed CD25 and sometimes also CD26 in an aberrant manner. MPN stem cells did not exhibit substantial amounts of CD90, CD273 (PD-L2), CD279 (PD-1), CD366 (TIM-3), CD371 (CLL-1), or IL-1RAP. The phenotype of CD34+ /CD38- stem cells did not change profoundly during progression to sAML. The disease-initiating capacity of putative MPN stem cells was confirmed in NSGS mice. Whereas CD34+ /CD38- MPN cells engrafted in NSGS mice, no substantial engraftment was produced by CD34+ /CD38+ or CD34- cells. The JAK2-targeting drug fedratinib and the BRD4 degrader dBET6 induced apoptosis and suppressed proliferation in MPN stem cells. Together, MPN stem cells display a unique phenotype, including cytokine receptors, immune checkpoint molecules, and other clinically relevant target antigens. Phenotypic characterization of neoplastic stem cells in MPN and sAML should facilitate their enrichment and the development of stem cell-eradicating (curative) therapies.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Policitemia Vera , Animais , Camundongos , Calreticulina/genética , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Células-Tronco Neoplásicas , Proteínas Nucleares/genética , Fenótipo , Policitemia Vera/genética , Fatores de Transcrição/genética , Humanos
8.
Am J Hematol ; 97(9): 1215-1225, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35794848

RESUMO

In most patients with chronic myeloid leukemia (CML) clonal cells can be kept under control by BCR::ABL1 tyrosine kinase inhibitors (TKI). However, overt resistance or intolerance against these TKI may occur. We identified the epigenetic reader BRD4 and its downstream-effector MYC as growth regulators and therapeutic targets in CML cells. BRD4 and MYC were found to be expressed in primary CML cells, CD34+ /CD38- leukemic stem cells (LSC), and in the CML cell lines KU812, K562, KCL22, and KCL22T315I . The BRD4-targeting drug JQ1 was found to suppress proliferation in KU812 cells and primary leukemic cells in the majority of patients with chronic phase CML. In the blast phase of CML, JQ1 was less effective. However, the BRD4 degrader dBET6 was found to block proliferation and/or survival of primary CML cells in all patients tested, including blast phase CML and CML cells exhibiting the T315I variant of BCR::ABL1. Moreover, dBET6 was found to block MYC expression and to synergize with BCR::ABL1 TKI in inhibiting the proliferation in the JQ1-resistant cell line K562. Furthermore, BRD4 degradation was found to overcome osteoblast-induced TKI resistance of CML LSC in a co-culture system and to block interferon-gamma-induced upregulation of the checkpoint antigen PD-L1 in LSC. Finally, dBET6 was found to suppress the in vitro survival of CML LSC and their engraftment in NSG mice. Together, targeting of BRD4 and MYC through BET degradation sensitizes CML cells against BCR::ABL1 TKI and is a potent approach to overcome multiple forms of drug resistance in CML LSC.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas Nucleares , Animais , Crise Blástica/tratamento farmacológico , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Proteínas Nucleares/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-myc , Células-Tronco , Fatores de Transcrição/genética
9.
Int J Cancer ; 148(3): 731-747, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33034050

RESUMO

Androgen deprivation therapy (ADT) remains a key approach in the treatment of prostate cancer (PCa). However, PCa inevitably relapses and becomes ADT resistant. Besides androgens, there is evidence that thyroid hormone thyroxine (T4) and its active form 3,5,3'-triiodo-L-thyronine (T3) are involved in the progression of PCa. Epidemiologic evidences show a higher incidence of PCa in men with elevated thyroid hormone levels. The thyroid hormone binding protein µ-Crystallin (CRYM) mediates intracellular thyroid hormone action by sequestering T3 and blocks its binding to cognate receptors (TRα/TRß) in target tissues. We show in our study that low CRYM expression levels in PCa patients are associated with early biochemical recurrence and poor prognosis. Moreover, we found a disease stage-specific expression of CRYM in PCa. CRYM counteracted thyroid and androgen signaling and blocked intracellular choline uptake. CRYM inversely correlated with [18F]fluoromethylcholine (FMC) levels in positron emission tomography/magnetic resonance imaging of PCa patients. Our data suggest CRYM as a novel antagonist of T3- and androgen-mediated signaling in PCa. The role of CRYM could therefore be an essential control mechanism for the prevention of aggressive PCa growth.


Assuntos
Cristalinas/genética , Cristalinas/metabolismo , Regulação para Baixo , Neoplasias da Próstata/patologia , Transdução de Sinais , Linhagem Celular Tumoral , Colina/administração & dosagem , Colina/análogos & derivados , Estudos de Coortes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metabolômica , Estadiamento de Neoplasias , Células PC-3 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores dos Hormônios Tireóideos/genética , Análise de Sequência de RNA , Análise Serial de Tecidos , Tri-Iodotironina/antagonistas & inibidores , Tri-Iodotironina/metabolismo , Cristalinas mu
10.
FASEB J ; 34(10): 14024-14041, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860638

RESUMO

Aluminium salts have been used in vaccines for decades. However, the mechanisms underlying their adjuvant effect are still unclear. Neutrophils, the first immune cells at the injection site, can release cellular DNA together with granular material, so-called neutrophil extracellular traps (NETs). In mice, NETs apparently play a role in aluminium hydroxide (alum)-adjuvant immune response to vaccines. Although no experimental data exist, this effect is assumed to be operative also in humans. As a first step to verify this knowledge in humans, we demonstrate that the injection of alum particles into human skin biopsies ex vivo leads to similar tissue infiltration of neutrophils and NET-formation. Moreover, we characterized the mechanism leading to alum-induced NET-release in human neutrophils as rapid, NADPH oxidase-independent process involving charge, phagocytosis, phagolysosomal rupture, Ca2+ -flux, hyperpolarization of the mitochondrial membrane, and mitochondrial ROS. Extracellular flow and inhibition experiments suggested that no additional energy from oxidative phosphorylation or glycolysis is required for NET-release. This study suggests a so far unappreciated role for neutrophils in the initial phase of immune responses to alum-containing vaccines in humans and provides novel insights into bioenergetic requirements of NET-formation.


Assuntos
Adjuvantes Imunológicos/farmacologia , Hidróxido de Alumínio/farmacologia , Armadilhas Extracelulares , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial , Infiltração de Neutrófilos , Neutrófilos/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Glicólise , Humanos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Fosforilação Oxidativa
11.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671092

RESUMO

Tryptase is a serine protease that is predominantly produced by tissue mast cells (MCs) and stored in secretory granules together with other pre-formed mediators. MC activation, degranulation and mediator release contribute to various immunological processes, but also to several specific diseases, such as IgE-dependent allergies and clonal MC disorders. Biologically active tryptase tetramers primarily derive from the two genes TPSB2 (encoding ß-tryptase) and TPSAB1 (encoding either α- or ß-tryptase). Based on the most common gene copy numbers, three genotypes, 0α:4ß, 1α:3ß and 2α:2ß, were defined as "canonical". About 4-6% of the general population carry germline TPSAB1-α copy number gains (2α:3ß, 3α:2ß or more α-extra-copies), resulting in elevated basal serum tryptase levels. This condition has recently been termed hereditary alpha tryptasemia (HαT). Although many carriers of HαT appear to be asymptomatic, a number of more or less specific symptoms have been associated with HαT. Recent studies have revealed a significantly higher HαT prevalence in patients with systemic mastocytosis (SM) and an association with concomitant severe Hymenoptera venom-induced anaphylaxis. Moreover, HαT seems to be more common in idiopathic anaphylaxis and MC activation syndromes (MCAS). Therefore, TPSAB1 genotyping should be included in the diagnostic algorithm in patients with symptomatic SM, severe anaphylaxis or MCAS.


Assuntos
Regulação Enzimológica da Expressão Gênica , Doenças Genéticas Inatas/patologia , Mastócitos/enzimologia , Mastocitose/patologia , Triptases/genética , Animais , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/genética , Humanos , Mastocitose/enzimologia , Mastocitose/genética , Triptases/metabolismo
12.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401724

RESUMO

Mastocytosis is a rare and complex disease characterized by expansion of clonal mast cells (MC) in skin and/or various internal organ systems. Involvement of internal organs leads to the diagnosis of systemic mastocytosis (SM). The WHO classification divides SM into indolent SM, smoldering SM and advanced SM variants, including SM with an associated hematologic neoplasm, aggressive SM, and MC leukemia. Historically, genetic analysis of individuals with pure cutaneous mastocytosis (CM) and SM have focused primarily on cohort studies of inherited single nucleotide variants and acquired pathogenic variants. The most prevalent pathogenic variant (mutation) in patients with SM is KIT p.D816V, which is detectable in most adult patients. Other somatic mutations have also been identified-especially in advanced SM-in TET2, SRSF2, ASXL1, RUNX1, CBL and JAK2, and shown to impact clinical and cellular phenotypes. Although only small patient cohorts have been analyzed, disease associations have also been identified in several germline variants within genes encoding certain cytokines or their receptors (IL13, IL6, IL6R, IL31, IL4R) and toll-like receptors. More recently, an increased prevalence of hereditary alpha-tryptasemia (HαT) caused by increased TPSAB1 copy number encoding alpha-tryptase has been described in patients with SM. Whereas HαT is found in 3-6% of general Western populations, it is identified in up to 17% of patients with SM. In the current manuscript we review the prevalence, functional role and clinical impact of various germline and somatic genetic variants in patients with mastocytosis.


Assuntos
Citocinas/genética , Mastocitose Sistêmica/genética , Polimorfismo Genético , Proteínas Proto-Oncogênicas c-kit/genética , Receptor 2 Toll-Like/genética , Humanos , Interleucina-13/genética , Interleucina-6/genética , Interleucinas/genética , Mastócitos/patologia , Mastocitose Sistêmica/diagnóstico , Mastocitose Sistêmica/metabolismo , Mastocitose Sistêmica/fisiopatologia , Proteínas do Tecido Nervoso/genética , Fosfolipase C gama/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Receptor 2 Toll-Like/metabolismo
13.
Blood ; 132(18): 1936-1950, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30018080

RESUMO

The Hermes receptor CD44 is a multifunctional adhesion molecule that plays an essential role in the homing and invasion of neoplastic stem cells in various myeloid malignancies. Although mast cells (MCs) reportedly express CD44, little is known about the regulation and function of this receptor in neoplastic cells in systemic mastocytosis (SM). We found that clonal CD34+/CD38- stem cells, CD34+/CD38+ progenitor cells, and CD117++/CD34- MCs invariably express CD44 in patients with indolent SM (ISM), SM with an associated hematologic neoplasm, aggressive SM, and MC leukemia (MCL). In addition, all human MCL-like cell lines examined (HMC-1, ROSA, and MCPV-1) displayed cytoplasmic and cell-surface CD44. We also found that expression of CD44 in neoplastic MCs depends on RAS-MEK and STAT5 signaling and increases with the aggressiveness of SM. Correspondingly, higher levels of soluble CD44 were measured in the sera of patients with advanced SM compared with ISM or cutaneous mastocytosis and were found to correlate with overall and progression-free survival. To investigate the functional role of CD44, a xenotransplantation model was employed using severe combined immunodeficient (SCID) mice, HMC-1.2 cells, and a short hairpin RNA (shRNA) against CD44. In this model, the shRNA-mediated knockdown of CD44 resulted in reduced MC expansion and tumor formation and prolonged survival in SCID mice compared with HMC-1.2 cells transduced with control shRNA. Together, our data show that CD44 is a RAS-MEK/STAT5-driven MC invasion receptor that correlates with the aggressiveness of SM. Whether CD44 can serve as therapeutic target in advanced SM remains to be determined in forthcoming studies.


Assuntos
Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/genética , Mastocitose Sistêmica/genética , Invasividade Neoplásica/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Adulto , Idoso , Animais , Progressão da Doença , Feminino , Humanos , Receptores de Hialuronatos/análise , Masculino , Mastócitos/metabolismo , Mastócitos/patologia , Mastocitose Sistêmica/metabolismo , Mastocitose Sistêmica/patologia , Camundongos Endogâmicos BALB C , Camundongos SCID , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia
14.
Blood ; 132(7): 694-706, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-29907599

RESUMO

Inhibition of Janus-kinase 1/2 (JAK1/2) is a mainstay to treat myeloproliferative neoplasms (MPN). Sporadic observations reported the co-incidence of B-cell non-Hodgkin lymphomas during treatment of MPN with JAK1/2 inhibitors. We assessed 626 patients with MPN, including 69 with myelofibrosis receiving JAK1/2 inhibitors for lymphoma development. B-cell lymphomas evolved in 4 (5.8%) of 69 patients receiving JAK1/2 inhibition compared with 2 (0.36%) of 557 with conventional treatment (16-fold increased risk). A similar 15-fold increase was observed in an independent cohort of 929 patients with MPN. Considering primary myelofibrosis only (N = 216), 3 lymphomas were observed in 31 inhibitor-treated patients (9.7%) vs 1 (0.54%) of 185 control patients. Lymphomas were of aggressive B-cell type, extranodal, or leukemic with high MYC expression in the absence of JAK2 V617F or other MPN-associated mutations. Median time from initiation of inhibitor therapy to lymphoma diagnosis was 25 months. Clonal immunoglobulin gene rearrangements were already detected in the bone marrow during myelofibrosis in 16.3% of patients. Lymphomas occurring during JAK1/2 inhibitor treatment were preceded by a preexisting B-cell clone in all 3 patients tested. Sequencing verified clonal identity in 2 patients. The effects of JAK1/2 inhibition were mirrored in Stat1-/- mice: 16 of 24 mice developed a spontaneous myeloid hyperplasia with the concomitant presence of aberrant B cells. Transplantations of bone marrow from diseased mice unmasked the outgrowth of a malignant B-cell clone evolving into aggressive B-cell leukemia-lymphoma. We conclude that JAK/STAT1 pathway inhibition in myelofibrosis is associated with an elevated frequency of aggressive B-cell lymphomas. Detection of a preexisting B-cell clone may identify individuals at risk.


Assuntos
Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Linfoma de Células B/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Mielofibrose Primária/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Linfoma de Células B/enzimologia , Linfoma de Células B/genética , Linfoma de Células B/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Mielofibrose Primária/enzimologia , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Estudos Retrospectivos
15.
Haematologica ; 105(2): 366-374, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31018976

RESUMO

A high allele burden of the KIT D816V mutation in peripheral blood or bone marrow aspirates indicates multi-lineage hematopoietic involvement and has been associated with an aggressive clinical course of systemic mastocytosis. Since mast cells are substantially underrepresented in these liquid specimens, their mutation burden likely underestimates the tumor burden of the disease. We used a novel previously validated digital polymerase chain reaction (PCR) method for KIT D816V analysis to systematically analyze the mutation burden in formalin-fixed, paraffin-embedded bone marrow tissue sections of 116 mastocytosis patients (91 with indolent and 25 with advanced systemic mastocytosis), and to evaluate for the first time the clinical value of the tissue mutation burden as a novel biomarker. The KIT D816V mutation burden in the tissue was significantly higher and correlated better with bone marrow mast cell infiltration (r=0.68 vs 0.48) and serum tryptase levels (r=0.68 vs 0.58) compared to that in liquid specimens. Furthermore, the KIT D816V tissue mutation burden was: (i) significantly higher in advanced than in indolent systemic mastocytosis (P=0.001); (ii) predicted survival of patients in multivariate analyses independently; and (iii) was significantly reduced after response to cytoreductive therapy. Finally, digital PCR was more sensitive in detecting KIT D816V in bone marrow sections of indolent systemic mastocytosis patients than melting curve analysis after peptide nucleic acid-mediated PCR clamping (97% vs 89%; P<0.05). In summary, digital PCR-based measurement of KIT D816V mutation burden in the tissue represents a novel biomarker with independent prognostic significance that can also be employed for monitoring disease progression and treatment response in systemic mastocytosis.


Assuntos
Mastocitose Sistêmica , Mastocitose , Biomarcadores , Humanos , Mastócitos , Mastocitose/diagnóstico , Mastocitose/genética , Mastocitose Sistêmica/diagnóstico , Mastocitose Sistêmica/genética , Mutação , Proteínas Proto-Oncogênicas c-kit/genética
16.
Clin Chem Lab Med ; 58(8): 1214-1222, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32084002

RESUMO

Background Monitoring of molecular response (MR) using quantitative polymerase chain reaction (PCR) for BCR-ABL1 is a pivotal tool for guiding tyrosine kinase inhibitor therapy and the long-term follow-up of patients with chronic myeloid leukemia (CML). Results of MR monitoring are standardized according to the International Scale (IS), and specific time-dependent molecular milestones for definition of optimal response and treatment failure have been included in treatment recommendations. The common practice to use peripheral blood (PB) instead of bone marrow (BM) aspirate to monitor the MR monitoring in CML has been questioned. Some studies described differences between BCR-ABL1 levels in paired PB and BM specimens. Methods We examined 631 paired PB and BM samples from 283 CML patients in a retrospective single-center study using an IS normalized quantitative reverse transcription (qRT)-PCR assay for quantification of BCR-ABL1IS. Results A good overall concordance of BCR-ABL1IS results was found, a systematic tendency towards higher BCR-ABL1IS levels in PB was observed in samples of CML patients in a major MR. This difference was most pronounced in patients treated with imatinib for at least 1 year. Importantly, the difference resulted in a significantly lower rate of deep MR when BCR-ABL1IS was assessed in the PB compared to BM aspirates. Conclusions In summary, our data suggest that the classification of deep MR in patients with CML is more stringent in PB than in BM. Our study supports the current practice to primarily use PB for long-term molecular follow-up monitoring in CML.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Terapia de Alvo Molecular/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Medula Óssea/patologia , Feminino , Proteínas de Fusão bcr-abl/sangue , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
17.
Blood ; 129(3): 371-382, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-27856463

RESUMO

Systemic mastocytosis (SM) is characterized by abnormal accumulation of neoplastic mast cells harboring the activating KIT mutation D816V in the bone marrow and other internal organs. As found in other myeloproliferative neoplasms, increased production of profibrogenic and angiogenic cytokines and related alterations of the bone marrow microenvironment are commonly found in SM. However, little is known about mechanisms and effector molecules triggering fibrosis and angiogenesis in SM. Here we show that KIT D816V promotes expression of the proangiogenic cytokine CCL2 in neoplastic mast cells. Correspondingly, the KIT-targeting drug midostaurin and RNA interference-mediated knockdown of KIT reduced expression of CCL2. We also found that nuclear factor κB contributes to KIT-dependent upregulation of CCL2 in mast cells. In addition, CCL2 secreted by KIT D816V+ mast cells was found to promote the migration of human endothelial cells in vitro. Furthermore, knockdown of CCL2 in neoplastic mast cells resulted in reduced microvessel density and reduced tumor growth in vivo compared with CCL2-expressing cells. Finally, we measured CCL2 serum concentrations in patients with SM and found that CCL2 levels were significantly increased in mastocytosis patients compared with controls. CCL2 serum levels were higher in patients with advanced SM and were found to correlate with poor survival. In summary, we have identified CCL2 as a novel KIT D816V-dependent key regulator of vascular cell migration and angiogenesis in SM. CCL2 expression correlates with disease severity and prognosis. Whether CCL2 may serve as a therapeutic target in advanced SM remains to be determined in forthcoming studies.


Assuntos
Medula Óssea/patologia , Quimiocina CCL2/sangue , Mastocitose Sistêmica/patologia , Proteínas Proto-Oncogênicas c-kit/genética , Movimento Celular , Microambiente Celular , Quimiocina CCL2/fisiologia , Células Endoteliais/citologia , Fibrose , Humanos , Mastócitos/metabolismo , Mastocitose Sistêmica/diagnóstico , Mastocitose Sistêmica/metabolismo , Mutação de Sentido Incorreto , Neovascularização Patológica , Prognóstico
18.
Clin Chem ; 64(3): 547-555, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29237714

RESUMO

BACKGROUND: The analytically sensitive detection of KIT D816V in blood and bone marrow is important for diagnosing systemic mastocytosis (SM). Additionally, precise quantification of the KIT D816V variant allele fraction (VAF) is relevant clinically because it helps to predict multilineage involvement and prognosis in cases of advanced SM. Digital PCR (dPCR) is a promising new method for sensitive detection and accurate quantification of somatic mutations. METHODS: We performed a validation study of dPCR for KIT D816V on 302 peripheral blood and bone marrow samples from 156 patients with mastocytosis for comparison with melting curve analysis after peptide nucleic acid-mediated PCR clamping (clamp-PCR) and allele-specific quantitative real-time PCR (qPCR). RESULTS: dPCR showed a limit of detection of 0.01% VAF with a mean CV of 8.5% and identified the mutation in 90% of patients compared with 70% for clamp-PCR (P < 0.001). Moreover, dPCR for KIT D816V was highly concordant with qPCR without systematic deviation of results, and confirmed the clinical value of KIT D816V VAF measurements. Thus, patients with advanced SM showed a significantly higher KIT D816V VAF (median, 2.43%) compared with patients with indolent SM (median, 0.14%; P < 0.001). Moreover, dPCR confirmed the prognostic significance of a high KIT D816V VAF regarding survival (P < 0.001). CONCLUSIONS: dPCR for KIT D816V provides a high degree of precision and sensitivity combined with the potential for interlaboratory standardization, which is crucial for the implementation of KIT D816V allele burden measurement. Thus, dPCR is suitable as a new method for KIT D816V testing in patients with mastocytosis.


Assuntos
Mastocitose/genética , Mutação , Reação em Cadeia da Polimerase/métodos , Proteínas Proto-Oncogênicas c-kit/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Medula Óssea , Análise Mutacional de DNA/métodos , Feminino , Humanos , Limite de Detecção , Masculino , Mastocitose/mortalidade , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Haematologica ; 103(5): 799-809, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29439183

RESUMO

Systemic mastocytosis is a complex disease defined by abnormal growth and accumulation of neoplastic mast cells in various organs. Most patients exhibit a D816V-mutated variant of KIT, which confers resistance against imatinib. Clinical problems in systemic mastocytosis arise from mediator-related symptoms and/or organ destruction caused by malignant expansion of neoplastic mast cells and/or other myeloid cells in various organ systems. DCC-2618 is a spectrum-selective pan KIT and PDGFRA inhibitor which blocks KIT D816V and multiple other kinase targets relevant to systemic mastocytosis. We found that DCC-2618 inhibits the proliferation and survival of various human mast cell lines (HMC-1, ROSA, MCPV-1) as well as primary neoplastic mast cells obtained from patients with advanced systemic mastocytosis (IC50 <1 µM). Moreover, DCC-2618 decreased growth and survival of primary neoplastic eosinophils obtained from patients with systemic mastocytosis or eosinophilic leukemia, leukemic monocytes obtained from patients with chronic myelomonocytic leukemia with or without concomitant systemic mastocytosis, and blast cells obtained from patients with acute myeloid leukemia. Furthermore, DCC-2618 was found to suppress the proliferation of endothelial cells, suggesting additional drug effects on systemic mastocytosis-related angiogenesis. Finally, DCC-2618 was found to downregulate IgE-mediated histamine release from basophils and tryptase release from mast cells. Together, DCC-2618 inhibits growth, survival and activation of multiple cell types relevant to advanced systemic mastocytosis. Whether DCC-2618 is effective in vivo in patients with advanced systemic mastocytosis is currently under investigation in clinical trials.


Assuntos
Proliferação de Células/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Mastócitos/patologia , Mastocitose Sistêmica/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Mastocitose Sistêmica/tratamento farmacológico , Mastocitose Sistêmica/metabolismo , Pessoa de Meia-Idade , Mutação , Células Tumorais Cultivadas
20.
Br J Haematol ; 179(2): 229-241, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28707321

RESUMO

The p21-activated kinases (PAKs) are key nodes in oncogenic signalling pathways controlling growth, survival, and motility of cancer cells. Their activity is increased in many human cancers and is associated with poor prognosis. To date, PAK deregulation has mainly been studied in solid tumours, where PAK1 and PAK4 are the main isoforms deregulated. We show that PAK1 and PAK2 are the critical isoforms in a BCR/ABL1+ haematopoietic malignancy. In suspension, leukaemic cells deficient for PAK1 and PAK2 undergo apoptosis, while the loss of either protein is well tolerated. Transfer of medium conditioned by shPAK2- but not shPAK1-expressing leukaemic cells interferes with endothelial cell growth. We found that leukaemic cells produce exosomes containing PAK2. Transfer of isolated exosomes supports endothelial cell proliferation. In parallel, we found that leukaemic cells explicitly require PAK2 to grow towards an extracellular matrix. PAK2-deficient cells fail to form colonies in methylcellulose and to induce lymphomas in vivo. PAK2 might therefore be the critical isoform in leukaemic cells by controlling tumour growth in a dual manner: vascularization via exosome-mediated transfer to endothelial cells and remodelling of the extracellular matrix. This finding suggests that the PAK2 isoform represents a promising target for the treatment of haematological diseases.


Assuntos
Proliferação de Células , Proteínas de Fusão bcr-abl/metabolismo , Neoplasias Hematológicas/metabolismo , Leucemia/metabolismo , Linfoma/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Proteínas de Fusão bcr-abl/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Leucemia/genética , Leucemia/patologia , Linfoma/genética , Linfoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Quinases Ativadas por p21/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA