Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Biol Chem ; 295(33): 11928-11937, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32636300

RESUMO

Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays an important role in mitochondrial bioenergetics. Previous studies in the yeast model have indicated that CL is required for optimal iron homeostasis, which is disrupted by a mechanism not yet determined in the yeast CL mutant, crd1Δ. This finding has implications for the severe genetic disorder, Barth syndrome (BTHS), in which CL metabolism is perturbed because of mutations in the CL-remodeling enzyme, tafazzin. Here, we investigate the effects of tafazzin deficiency on iron homeostasis in the mouse myoblast model of BTHS tafazzin knockout (TAZ-KO) cells. Similarly to CL-deficient yeast cells, TAZ-KO cells exhibited elevated sensitivity to iron, as well as to H2O2, which was alleviated by the iron chelator deferoxamine. TAZ-KO cells exhibited increased expression of the iron exporter ferroportin and decreased expression of the iron importer transferrin receptor, likely reflecting a regulatory response to elevated mitochondrial iron. Reduced activities of mitochondrial iron-sulfur cluster enzymes suggested that the mechanism underlying perturbation of iron homeostasis was defective iron-sulfur biogenesis. We observed decreased levels of Yfh1/frataxin, an essential component of the iron-sulfur biogenesis machinery, in mitochondria from TAZ-KO mouse cells and in CL-deleted yeast crd1Δ cells, indicating that the role of CL in iron-sulfur biogenesis is highly conserved. Yeast crd1Δ cells exhibited decreased processing of the Yfh1 precursor upon import, which likely contributes to the iron homeostasis defects. Implications for understanding the pathogenesis of BTHS are discussed.


Assuntos
Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Mioblastos/metabolismo , Aciltransferases , Animais , Síndrome de Barth/genética , Síndrome de Barth/patologia , Cardiolipinas/genética , Linhagem Celular , Deleção de Genes , Técnicas de Inativação de Genes , Proteínas de Ligação ao Ferro/genética , Camundongos , Mioblastos/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Frataxina
2.
Biol Chem ; 401(6-7): 699-708, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-31967957

RESUMO

Mitochondria import the vast majority of their proteins via dedicated protein machineries. The translocase of the outer membrane (TOM complex) forms the main entry site for precursor proteins that are produced on cytosolic ribosomes. Subsequently, different protein sorting machineries transfer the incoming preproteins to the mitochondrial outer and inner membranes, the intermembrane space, and the matrix. In this review, we highlight the recently discovered role of porin, also termed voltage-dependent anion channel (VDAC), in mitochondrial protein biogenesis. Porin forms the major channel for metabolites and ions in the outer membrane of mitochondria. Two different functions of porin in protein translocation have been reported. First, it controls the formation of the TOM complex by modulating the integration of the central receptor Tom22 into the mature translocase. Second, porin promotes the transport of carrier proteins toward the carrier translocase (TIM22 complex), which inserts these preproteins into the inner membrane. Therefore, porin acts as a coupling factor to spatially coordinate outer and inner membrane transport steps. Thus, porin links metabolite transport to protein import, which are both essential for mitochondrial function and biogenesis.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Porinas/metabolismo , Humanos , Transporte Proteico , Saccharomyces cerevisiae/metabolismo
3.
Biol Chem ; 401(1): 117-129, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31513529

RESUMO

Biogenesis and function of mitochondria depend on the import of about 1000 precursor proteins that are produced on cytosolic ribosomes. The translocase of the outer membrane (TOM) forms the entry gate for most proteins. After passage through the TOM channel, dedicated preprotein translocases sort the precursor proteins into the mitochondrial subcompartments. Many proteins have to be assembled into oligomeric membrane-integrated complexes in order to perform their functions. In this review, we discuss a dual role of mitochondrial preprotein translocases in protein translocation and oligomeric assembly, focusing on the biogenesis of the TOM complex and the respiratory chain. The sorting and assembly machinery (SAM) of the outer mitochondrial membrane forms a dynamic platform for coupling transport and assembly of TOM subunits. The biogenesis of the cytochrome c oxidase of the inner membrane involves a molecular circuit to adjust translation of mitochondrial-encoded core subunits to the availability of nuclear-encoded partner proteins. Thus, mitochondrial protein translocases not only import precursor proteins but can also support their assembly into functional complexes.


Assuntos
Proteínas de Transporte/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas de Transporte/ultraestrutura , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/biossíntese , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/ultraestrutura , Biossíntese de Proteínas/genética , Transporte Proteico/genética , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética
4.
Cell Rep ; 31(4): 107567, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32348752

RESUMO

The mitochondrial outer membrane contains integral proteins with α-helical membrane anchors or a transmembrane ß-barrel. The translocase of the outer membrane (TOM) cooperates with the sorting and assembly machinery (SAM) in the import of ß-barrel proteins, whereas the mitochondrial import (MIM) complex inserts precursors of multi-spanning α-helical proteins. Single-spanning proteins constitute more than half of the integral outer membrane proteins; however, their biogenesis is poorly understood. We report that the yeast MIM complex promotes the insertion of proteins with N-terminal (signal-anchored) or C-terminal (tail-anchored) membrane anchors. The MIM complex exists in three dynamic populations. MIM interacts with TOM to accept precursor proteins from the receptor Tom70. Free MIM complexes insert single-spanning proteins that are imported in a Tom70-independent manner. Finally, coupling of MIM and SAM promotes early assembly steps of TOM subunits. We conclude that the MIM complex is a major and versatile protein translocase of the mitochondrial outer membrane.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Humanos , Conformação Proteica em alfa-Hélice
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA