RESUMO
Stable flies, Stomoxys calcitrans (L.), are blood-feeding ectoparasites of cattle. Host-seeking stable flies respond to various cattle host cues, but a potential role of cattle breath gases [carbon dioxide (CO2), methane (CH4)] and cattle breath volatiles (acetone, isoprene, 2-butanone, 2-propanol, propionic acid, 3-methyl butyric acid, phenol), alone or in combination, on host-seeking behavior of stable flies has not yet been comprehensively investigated. In laboratory and greenhouse experiments, we tested the hypotheses that (1) CO2 and CH4 interactively attract stable flies, (2) CO2 'gates' attraction of stable flies to CH4, and (3) breath volatiles on their own, or in combination with both CO2 and CH4, attract stable flies. In Y-tube olfactometer experiments, the blend of CH4 (0.5%) and CO2 (1%) in breathing air ('b-air') attracted significantly more female flies than CH4, or CO2, in b-air. The flies' responses to CH4 were contingent upon their prior or concurrent exposure to CO2. In two-choice experiments in a large greenhouse compartment, significantly more flies landed on the host-look-alike barrel that disseminated a blend of CO2 and CH4 in b-air (CO2/CH4/b-air) than on the barrel disseminating either b-air or CO2. Moreover, significantly more flies landed on the barrel that disseminated synthetic breath volatiles (SBVs) than on the barrel disseminating b-air. The blend of CO2/CH4/b-air and SBVs elicited more fly landings on barrels than CO2/CH4/b-air but not than SBVs. SBVs, possibly combined with both CH4 and CO2, could be developed as a lure to enhance trap captures of stable flies in livestock production facilities.
RESUMO
Larval habitats of blood-feeding stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae), overlap with foraging sites of black blow flies, Phormia regina (Meigen) (Diptera: Calliphoridae). We tested the hypothesis that bacteria in blow fly excreta inform oviposition decisions by female stable flies. In laboratory 2-choice bioassays, we offered gravid female stable flies fabric-covered agar plates as oviposition sites that were kept sterile or inoculated with either a blend of 7 bacterial strains isolated from blow fly excreta (7-isolate-blend) or individual bacterial isolates from that blend. The 7-isolate-blend deterred oviposition by female stable flies, as did either of 2 strains of Morganella morganii subsp. sibonii. Conversely, Exiguobacterium sp. and Serratia marcescens each prompted oviposition by flies. The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria could not be physically accessed. Oviposition deterrence caused by semiochemicals of the 7-isolate-blend may help stable flies avoid competition with blow flies. The semiochemicals of bioactive bacterial strains could be developed as trap lures to attract and capture flies and deter their oviposition in select larval habitats.
Assuntos
Morganella , Muscidae , Feminino , Animais , Calliphoridae , Oviposição , Larva , Bactérias , FeromôniosRESUMO
Insects use their polarization-sensitive photoreceptors in a variety of ecological contexts including host-foraging. Here, we investigated the effect of polarized light on host foraging by the blood-feeding stable fly, Stomoxys calcitrans, a pest of livestock. Electroretinogram recordings with chromatic adaptation demonstrated that the spectral sensitivity of stable flies resembles that of other calyptrate flies. Histological studies of the flies' compound eye revealed differences in microvillar arrangement of ommatidial types, assumed to be pale and yellow, with the yellow R7 and pale R8 photoreceptors having the greatest polarization sensitivity. In behavioural experiments, stable flies preferred to alight on horizontally polarized stimuli with a high degree of linear polarization. This preferential response disappeared when either ultraviolet (UV) or human-visible wavelengths were omitted from light stimuli. Removing specific wavelength bands further revealed that the combination of UV (330-400 nm) and blue (400-525 nm) wavelength bands was sufficient to enable polarized light discrimination by flies. These findings enhance our understanding of polarization vision and foraging behavior among hematophagous insects and should inform future trap designs.
Assuntos
Muscidae , Animais , Humanos , Muscidae/fisiologia , Visão Ocular , Comportamento AlimentarRESUMO
Four species of Tetramorium pavement ants are known to guide foraging activities of nestmates via trail pheromones secreted from the poison gland of worker ants, but the trail pheromone of T. immigrans is unknown. Our objectives were to (1) determine whether poison gland extract of T. immigrans workers induces trail-following behavior of nestmates, (2) identify the trail pheromone, and (3) test whether synthetic trail pheromone induces trail-following behavior of workers. In laboratory no-choice bioassays, ants followed poison-gland-extract trails farther than they followed whole-body-extract trails or solvent-control trails. Gas chromatographic-electroantennographic detection (GC-EAD) analyses of poison gland extract revealed a single candidate pheromone component (CPC) that elicited responses from worker ant antennae. The CPC mass spectrum indicated, and an authentic standard confirmed, that the CPC was methyl 2-methoxy-6-methylbenzoate (MMMB). In further laboratory no-choice bioassays, ants followed poison-gland-extract trails (tested at 1 ant equivalent) and synthetic MMMB trails (tested at 0.35 ant equivalents) equally far, indicating that MMMB is the single-component trail pheromone of T. immigrans. Moreover, in laboratory two-choice bioassays, ants followed MMMB trails ~ 21-times farther than solvent-control trails. In field settings, when T. immigrans colonies were offered a choice between two paper strips treated with a synthetic MMMB trail or a solvent-control trail, each leading to an apple bait, the MMMB trails efficiently recruited nestmates to baits.
Assuntos
Formigas , Animais , Formigas/fisiologia , Comportamento Alimentar , Humanos , Feromônios/farmacologia , Feromônios/fisiologiaRESUMO
Synthetic sex pheromone lures are useful tools to monitor and control populations of adult click beetles (Coleoptera: Elateridae). However, sex pheromones for Agriotes click beetle species native to North America have yet to be identified. Here we report the identification and field testing of the sex pheromone of Agriotes ferrugineipennis. Headspace volatiles from female beetles were collected on Porapak Q, and aliquots of Porapak extract were analyzed by gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectrometry. 7-Methyloctyl 7-methyloctanoate (7Me7Me) emitted by females was more abundant and elicited much stronger responses from male antennae than the aldehydes octanal and nonanal and the ketone 6,10,14-trimethyl-2-pentadecanone. In a field experiment, captures of A. ferrugineipennis males in traps baited with candidate pheromone components exceeded those of unbaited control traps, on average by nearly 1,200 times. Neither the ketone nor the aldehydes as lure constituents appeared to alter captures of males in 7Me7Me-baited traps. We conclude that 7Me7Me is the major, and possibly the only, sex attractant pheromone component of female A. ferrugineipennis.
Assuntos
Besouros , Atrativos Sexuais , Aldeídos/farmacologia , Animais , Besouros/fisiologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Cetonas/farmacologia , Masculino , Feromônios/química , Atrativos Sexuais/química , Atrativos Sexuais/farmacologiaRESUMO
Common bed bugs, Cimex lectularius, can carry, but do not transmit, pathogens to the vertebrate hosts on which they feed. Some components of the innate immune system of bed bugs, such as antimicrobial peptides (AMPs), eliminate the pathogens. Here, we determined the molecular characteristics, structural properties, and phylogenetic relatedness of two new defensins (CL-defensin1 (XP_024085718.1), CL-defensin2 (XP_014240919.1)), and two new defensin isoforms (CL-defensin3a (XP_014240918.1), CL-defensin3b (XP_024083729.1)). The complete amino acid sequences of CL-defensin1, CL-defensin2, CL-defensin3a, and CL-defensin3b are strongly conserved, with only minor differences in their signal and pro-peptide regions. We used a combination of comparative transcriptomics and real-time quantitative PCR to evaluate the expression of these defensins in the midguts and the rest of the body of insects that had been injected with bacteria or had ingested blood containing the Gram-positive (Gr+) bacterium Bacillus subtilis and the Gram-negative (Gr-) bacterium Escherichia coli. We demonstrate, for the first time, sex-specific and immunization mode-specific upregulation of bed bug defensins in response to injection or ingestion of Gr+ or Gr- bacteria. Understanding the components, such as these defensins, of the bed bugs' innate immune systems in response to pathogens may help unravel why bed bugs do not transmit pathogens to vertebrates.
Assuntos
Percevejos-de-Cama , Animais , Peptídeos Antimicrobianos , Bactérias , Percevejos-de-Cama/genética , Percevejos-de-Cama/microbiologia , Defensinas/química , Defensinas/genética , Defensinas/farmacologia , Ingestão de Alimentos , Feminino , Masculino , Filogenia , Isoformas de ProteínasRESUMO
The polyphagous invasive brown marmorated stink bug, Halyomorpha halys, reportedly discriminates among phenological stages of host plants. To determine whether olfaction is involved in host plant stage discrimination, we selected (dwarf) sunflower, Helianthus annuus, as a model host plant species. When adult females of a still-air laboratory experiment were offered a choice of four potted sunflowers at distinct phenological stages (vegetative, pre-bloom, bloom, seeding), most females settled onto blooming plants but oviposited evenly on plants of all four stages. In moving-air two-choice olfactometer experiments, we then tested each plant stage versus filtered air and versus one another, for attraction of H. halys females. Blooming sunflowers performed best overall, but no one plant stage was most attractive in all experiments. Capturing and analyzing (by GC-MS) the headspace odorants of each plant stage revealed a marked increase of odorant abundance (e.g., monoterpenes) as plants transitioned from pre-bloom to bloom. Analyzing the headspace odorant blend of blooming sunflower by gas chromatographic-electroantennographic detection (GC-EAD) revealed 13 odorants that consistently elicited responses from female H. halys antennae. An 11-component synthetic blend of these odorants attracted H. halys females in laboratory olfactometer experiments. Furthermore, in field settings, the synthetic blend enhanced the attractiveness of synthetic H. halys pheromone as a trap lure, particularly in spring (April to mid-June). A simpler yet fully effective sunflower semiochemical blend could be developed and coupled with synthetic H. halys aggregation pheromones to improve monitoring efforts or could improve the efficacy of modified attract-and-kill control tactics for H. halys.
Assuntos
Comportamento Animal/efeitos dos fármacos , Helianthus/química , Heterópteros/fisiologia , Feromônios/farmacologia , Animais , Feminino , Flores/química , Flores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Helianthus/metabolismo , Oviposição/efeitos dos fármacos , Feromônios/análise , Feromônios/química , Estações do AnoRESUMO
Wireworms, the larvae of click beetles (Coleoptera: Elateridae), are soil-dwelling insect pests inflicting major economic damage on many types of agricultural crops worldwide. The objective of this work was to identify the female-produced sex pheromones of the Pacific Coast wireworm, Limonius canus LeConte, and the sugarbeet wireworm, L. californicus (Mannerheim) (Coleoptera: Elateridae). Headspace volatiles from separate groups of female L. canus and L. californicus were collected on Porapak Q and analyzed by gas chromatography with electroantennographic detection (GC-EAD) and GC-mass spectrometry. GC-EAD recordings revealed strong responses from male L. canus and male L. californicus antennae to the same compound, which appeared below GC detection threshold. The structure of this candidate pheromone component was deduced from the results of micro-analytical treatments of extracts, retention index calculations on four GC columns, and by syntheses of more than 25 model compounds which were assessed for their GC retention characteristics and electrophysiological activity. The EAD-active compound was identified as (E)-4-ethyloct-4-enoic acid, which we name limoniic acid. In field experiments in British Columbia and Alberta, Canada, traps baited with synthetic limoniic acid captured large numbers of male Limonius click beetles, whereas unbaited control traps captured few. Compared to traps baited with the analogue, (E)-5-ethyloct-4-enoic acid, traps baited with limoniic acid captured 9-times more male L. californicus, and 6.5-times more male western field wireworms, L. infuscatus Motschulsky, but 2.3-times fewer male L. canus. Limoniic acid can now be developed for detection, monitoring and possibly control of L. californicus, L. infuscatus and L. canus populations.
Assuntos
Besouros/química , Atrativos Sexuais/química , Animais , Besouros/fisiologia , Feminino , Masculino , Atrativos Sexuais/fisiologiaRESUMO
There is an ever increasing number of arthropod taxa shown to have polarization sensitivity throughout their compound eyes. However, the downstream processing of polarized reflections from objects is not well understood. The small white butterfly, Pieris rapae, has been demonstrated to exploit foliar polarized reflections, specifically the degree of linear polarization (DoLP), to recognize host plants. The well-described visual system of P. rapae includes several photoreceptor types (red, green, blue) that are sensitive to polarized light. Yet, the roles and interaction among photoreceptors underlying the behavioral responses of P. rapae to stimuli with different DoLP remain unknown. To investigate potential neurological mechanisms, we designed several two-choice behavioral bioassays, displaying plant images on paired LCD monitors, which allowed for independent control of polarization, color and intensity. When we presented choices between stimuli that differed in either color or DoLP, both decreasing and increasing the intensity of the more attractive stimulus reduced the strength of preference. This result suggests that differences in color and DoLP are perceived in a similar manner. When we offered a DoLP choice between plant images manipulated to minimize the response of blue, red, or blue and red photoreceptors, P. rapae shifted its preference for DoLP, suggesting a role for all of these photoreceptors. Modeling of P. rapae photoreceptor responses to test stimuli suggests that differential DoLP is not perceived solely as a color difference. Our combined results suggest that Prapae females process and interpret polarization reflections in a way different from that described for other polarization-sensitive taxa.
Assuntos
Borboletas , Animais , Feminino , Fotofobia , Células Fotorreceptoras de InvertebradosRESUMO
The original version of this article unfortunately contained a mistake.
RESUMO
Insect herbivores exploit plant cues to discern host and non-host plants. Studies of visual plant cues have focused on colour despite the inherent polarization sensitivity of insect photoreceptors and the information carried by polarization of foliar reflectance, most notably the degree of linear polarization (DoLP; 0-100%). The DoLP of foliar reflection was hypothesized to be a host plant cue for insects but was never experimentally tested. Here, we show that cabbage white butterflies, Pieris rapae (Pieridae), exploit the DoLP of foliar reflections to discriminate among plants. In experiments with paired digital plant images, P. rapae females preferred images of the host plant cabbage with a low DoLP (31%) characteristic of cabbage foliage over images of a non-host potato plant with a higher DoLP (50%). By reversing the DoLP of these images, we were able to shift the butterflies' preference for the cabbage host plant image to the potato non-host plant image, indicating that the DoLP had a greater effect on foraging decisions than the differential colour, intensity, or shape of the two plant images. Although previously not recognized, the DoLP of foliar reflection is an essential plant cue that may commonly be exploited by foraging insect herbivores.
Assuntos
Borboletas/fisiologia , Sinais (Psicologia) , Luz , Oviposição , Folhas de Planta , Animais , FemininoRESUMO
The two subspecies of the small white butterfly, the European Pieris rapae rapae and the Asian P. r. crucivora, differ in wing colouration. Under ultraviolet light, the wings of both male and female P. r. rapae appear dark, whereas the wings of male P. r. crucivora are dark and those of females are bright. It has been hypothesized that these sexually dimorphic wing reflections in P. r. crucivora may have induced the evolution of a fluorescing-screening pigment in the violet-opsin-expressing photoreceptors of males, thus facilitating greater wavelength discrimination near 400 nm. Comparing the compound eyes of the two subspecies using genetic, microscopical, spectrographic, and histological methods revealed no differences that would meaningfully affect photoreceptor sensitivity, suggesting that the fluorescing-screening pigment did not evolve in response to sexually dimorphic wing reflections. Our investigation further revealed that (i) the peri-rhabdomal reddish-screening pigments differ among the three ommatidial types; (ii) each of the ommatidial types exhibits a unique class of red photoreceptor with a distinct spectral peak; and (iii) the blue, green, and red photoreceptors of P. rapae exhibit a polarization sensitivity > 2, with red photoreceptors allowing for a two-channel opponency form of polarization sensitivity.
Assuntos
Borboletas/fisiologia , Olho Composto de Artrópodes/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Caracteres Sexuais , Animais , Feminino , MasculinoRESUMO
Trail pheromones deposited by ants lead nestmates to food sources. Based on previous evidence that the trail pheromone of the carpenter ant Camponotus modoc originates from the hindgut, our objective in this study was to identify the key component(s) of the pheromone. We collected C. modoc colonies from conifer forests and maintained them in an outdoor enclosure near our laboratory for chemical analyses and behavioral experiments. In gas chromatographic-electroantennographic detection and gas chromatography-mass spectrometric analyses of worker ant hindgut extracts, we identified five candidate components: 2,4-dimethylhexanoic acid, 2,4-dimethyl-5-hexanolide, pentadecane, dodecanoic acid and 3,4-dihydro-8-hydroxy-3,5,7-trimethylisocoumarin. In a series of trail-following experiments, ants followed trails of synthetic 2,4-dimethyl-5-hexanolide, a blend of the five compounds, and hindgut extract over similar distances, indicating that the hexanolide accounted for the entire behavioral activity of the hindgut extract. The hexanolide not only mediated orientation of C. modoc foragers on trails, it also attracted them over distance, indicating a dual function. Further analyses and bioassays with racemic and stereoselectively synthesized hexanolides revealed that the ants produce, and respond to, the (2S,4R,5S)-stereoisomer. The same stereoisomer is a trail pheromone component in several Camponotus congeners, indicating significant overlap in their respective trail pheromone communication systems.
Assuntos
Misturas Complexas/análise , Feromônios/análise , Alcanos/análise , Animais , Formigas , Comportamento Animal , Técnicas Biossensoriais/métodos , Caproatos/análise , Cumarínicos/análise , Glândulas Exócrinas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Intestinos/química , Ácidos Láuricos/análise , EstereoisomerismoRESUMO
Recently, it was reported (i) that the sex pheromone blend of male house mice, Mus musculus, comprises not only volatile components (3,4-dehydro-exo-brevicomin; 2-sec-butyl-4,5-dihydrothiazole) but also a component of low volatility (the sex steroid testosterone), and (ii) that the sex steroids progesterone and estradiol are sex pheromone components of female house mice. Here we tested the hypothesis that the sex attractant pheromone blend of female mice, analogous to that of male mice, also comprises volatile pheromone components. Analyzing by GC-MS the head space volatiles of bedding soiled with urine and feces of laboratory-kept females and males revealed three candidate pheromone components (CPCs) that were adult female-specific: butyric acid, 2-methyl butyric acid and 4-heptanone. In a two-choice laboratory experiment, adult males spent significantly more time in the treatment chamber baited with both the synthetic steroids (progesterone, estradiol) and the synthetic CPCs than in the paired control chamber baited only with the synthetic steroids. In field experiments, trap boxes baited with both the CPCs and the steroids captured 6.7-times more adult males and 4.7-times more juvenile males than trap boxes baited with the steroids alone. Conversely, trap boxes baited with both the CPCs and the steroids captured 4.3-times more adult males and 2.7-fold fewer adult females than trap boxes baited with the CPCs alone. In combination, these data support the conclusion that butyric acid, 2-methyl butyric acid and 4-heptanone are part of the sex attractant pheromone of female house mice. With progesterone and estradiol being pheromone components of both female brown rats, Rattus norvegicus, and female house mice, these three volatile components could impart specificity to the sexual communication system of house mice, brown rats and possibly other rodent species.
Assuntos
Camundongos/fisiologia , Atrativos Sexuais/análise , Comportamento Sexual Animal , Compostos Orgânicos Voláteis/análise , Animais , Ácido Butírico/análise , Ácido Butírico/metabolismo , Estradiol/análise , Estradiol/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Cetonas/análise , Cetonas/metabolismo , Masculino , Metilação , Progesterona/análise , Progesterona/metabolismo , Atrativos Sexuais/metabolismo , Compostos Orgânicos Voláteis/metabolismoRESUMO
As part of an ongoing program to identify sex attractant pheromone components that mediate sexual communication in yellowjacket wasps, a novel sesquiterpene was isolated from body surface extracts of virgin bald-faced hornet queens, Dolichovespula maculata. The gross structure of this sesquiterpene was proposed through microscale spectroscopic analyses, and the configuration of the central olefin was subsequently confirmed by total synthesis. This new natural product (termed here dolichovespulide) represents an important addition to the relatively small number of terpenoids reported from the taxonomic insect family Vespidae.
Assuntos
Vespas/química , Animais , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Análise Espectral/métodosRESUMO
BACKGROUND: Flies have some of the most elaborate visual systems in the Insecta, often featuring large, sexually dimorphic eyes with specialized "bright zones" that may have a functional role during mate-seeking behavior. The fast visual system of flies is considered to be an adaptation in support of their advanced flight abilities. Here, we show that the immense processing speed of the flies' photoreceptors plays a crucial role in mate recognition. RESULTS: Video-recording wing movements of abdomen-mounted common green bottle flies, Lucilia sericata, under direct light at 15,000 frames per second revealed that wing movements produce a single, reflected light flash per wing beat. Such light flashes were not evident when we video-recorded wing movements under diffuse light. Males of L. sericata are strongly attracted to wing flash frequencies of 178 Hz, which are characteristic of free-flying young females (prospective mates), significantly more than to 212, 235, or 266 Hz, characteristic of young males, old females, and old males, respectively. In the absence of phenotypic traits of female flies, and when given a choice between light emitting diodes that emitted either constant light or light pulsed at a frequency of 110, 178, 250, or 290 Hz, males show a strong preference for the 178-Hz pulsed light, which most closely approximates the wing beat frequency of prospective mates. CONCLUSIONS: We describe a previously unrecognized visual mate recognition system in L. sericata. The system depends upon the sex- and age-specific frequencies of light flashes reflecting off moving wings, and the ability of male flies to distinguish between the frequency of light flashes produced by rival males and prospective mates. Our findings imply that insect photoreceptors with fast processing speed may not only support agile flight with advanced maneuverability but may also play a supreme role in mate recognition. The low mating propensity of L. sericata males on cloudy days, when light flashes from the wings of flying females are absent, seems to indicate that these flies synchronize sexual communication with environmental conditions that optimize the conspicuousness of their communication signals, as predicted by sensory drive theory.
Assuntos
Dípteros/fisiologia , Voo Animal/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Luz , Masculino , Asas de Animais/fisiologiaRESUMO
Yellowjackets in the genera Vespula and Dolichovespula are prevalent eusocial insects of great ecological and economic significance, but the chemical signals of their sexual communication systems have defied structural elucidation. Herein, we report the identification of sex attractant pheromone components of virgin bald-faced hornet queens (Dolichovespula maculata). We analyzed body surface extracts of queens by coupled gas chromatographic-electroantennographic detection (GC-EAD), isolated the compounds that elicited responses from male antennae by high-performance liquid chromatography (HPLC), and identified these components by GC mass spectrometry (MS), HPLC-MS, and NMR spectroscopy. In laboratory olfactometer experiments, synthetic (2Z,7E)-3,7-dimethyldeca-2,7-diendioic acid (termed here maculatic acidâ A) and (2Z,7E)-10-methoxy-3,7-dimethyldeca-10-oxo-deca-2,7-dienoic acid (termed here maculatic acidâ C) in binary combination significantly attracted bald-faced hornet males. These are the first sex attractant pheromone components identified in yellowjackets.
Assuntos
Feromônios/metabolismo , Atrativos Sexuais/metabolismo , Vespas/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Masculino , Feromônios/análise , Atrativos Sexuais/análise , Vespas/químicaRESUMO
Previous studies of magnetoreception in honey bees, Apis mellifera, focused on the identification of magnetic material, its formation, the location of the receptor and potential underlying sensory mechanisms, but never directly linked magnetic material to a magnetoreceptive function. In our study, we demonstrate that ferromagnetic material consistent with magnetite plays an integral role in the bees' magnetoreceptor. Subjecting lyophilized and pelletized bee tagmata to analyses by a superconducting quantum interference device generated a distinct hysteresis loop for the abdomen but not for the thorax or the head of bees, indicating the presence of ferromagnetic material in the bee abdomen. Magnetic remanence of abdomen pellets produced from bees that were, or were not, exposed to the 2.2-kOe field of a magnet while alive differed, indicating that magnet exposure altered the magnetization of this magnetite in live bees. In behavioural two-choice field experiments, bees briefly exposed to the same magnet, but not sham-treated control bees, failed to sense a custom-generated magnetic anomaly, indicating that magnet exposure had rendered the bees' magnetoreceptor dysfunctional. Our data support the conclusion that honey bees possess a magnetite-based magnetoreceptor located in the abdomen.
Assuntos
Abelhas/fisiologia , Óxido Ferroso-Férrico , Campos Magnéticos , Abdome , AnimaisRESUMO
Sex hormones of mammals control the expression of sexual characteristics and bodily functions. The male hormone testosterone and the female hormones progesterone and estradiol are known to occur in urine markings of mice. Here, we show that all three hormones are also present in urine of brown rats, and that they are effective sexual communication signals (pheromones) that elicit attraction behavior of prospective mates in both brown rats and house mice. When added as lures to trap boxes in field experiments, synthetic testosterone, for example, increased captures of adult female mice 15-fold, and a blend of progesterone and estradiol increased captures of male mice eightfold and male rats 13-fold. Remarkably, these hormones increased captures even though the food- and pheromone-based baits to which they were added had previously been shown to be superior to current commercial rodent attractants. We predict that these sex hormones will function as sex attractant pheromones in diverse taxa.
Assuntos
Hormônios Esteroides Gonadais/metabolismo , Atrativos Sexuais/metabolismo , Animais , Feminino , Hormônios Esteroides Gonadais/química , Masculino , Camundongos , Ratos , Atrativos Sexuais/químicaRESUMO
Honey bees, Apis mellifera, exploit the geomagnetic field for orientation during foraging and for alignment of their combs within hives. We tested the hypothesis that honey bees sense the polarity of magnetic fields. We created an engineered magnetic anomaly in which the magnetic field generally either converged toward a sugar reward in a watch glass, or away from it. After bees in behavioral field studies had learned to associate this anomaly with a sugar water reward, we subjected them to two experiments performed in random order. In both experiments, we presented bees with two identical sugar water rewards, one of which was randomly marked by a magnetic field anomaly. During the control experiment, the polarity of the magnetic field anomaly was maintained the same as it was during the training session. During the treatment experiment, it was reversed. We predicted that bees would not respond to the altered anomaly if they were sensitive to the polarity of the magnetic field. Our findings that bees continued to respond to the magnetic anomaly when its polarity was in its unaltered state, but did not respond to it when its polarity was reversed, support the hypothesis that honey bees possess a polarity-sensitive magnetoreceptor.