Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(7): 4642-4651, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335142

RESUMO

Here, we report a detailed surface analysis of dry- and ambient air-annealed CsPbI3 films and their subsequent modified interfaces in perovskite solar cells. We revealed that annealing in ambient air does not adversely affect the optoelectronic properties of the semiconducting film; instead, ambient air-annealed samples undergo a surface modification, causing an enhancement of band bending, as determined by hard X-ray photoelectron spectroscopy measurements. We observe interface charge carrier dynamics changes, improving the charge carrier extraction in CsPbI3 perovskite solar cells. Optical spectroscopic measurements show that trap state density is decreased due to ambient air annealing. As a result, air-annealed CsPbI3-based n-i-p structure devices achieved a 19.8% power conversion efficiency with a 1.23 V open circuit voltage.

2.
Waste Manag Res ; : 734242X241237197, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38628082

RESUMO

Even though carbon fibres (CFs) have been increasingly used, their end-of-life (EOL) handling presents a challenge. To address this issue, we evaluated the use of recycled CFs (rCFs), produced through pyrolysis, as rovings to be used in textile reinforced concrete structures. Mechanical processing (hammer mill) with varying machine settings was then used to assess EOL handling, considering the separation potential of rCFs and the length of separated rCFs. The results showed that rCF rovings can be separated from concrete with an average of 87 wt.-%, whereas the highest rCF length and separation yield were observed in different machine settings. In addition, a techno-environmental assessment on the mechanical process was performed to compare different machine settings. The machine settings with the highest yield of rCF rovings also had the highest fine fraction that cannot be further separated. Furthermore, life cycle assessment (LCA) was conducted covering three life cycles of CFs and an additional LCA for comparing rCF with virgin CF. LCA results revealed that CF reinforced plastic and concrete productions are the two main contributors to environmental impacts. The comparative LCA between virgin CF and rCF also showed that using rCF is environmentally advantageous, as virgin CF production causes 230% more global warming potential compared to rCF. Future studies assessing different allocation approaches, quantifying the quality of rCF, and its inclusion in LCA are relevant.

3.
Sensors (Basel) ; 23(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37430514

RESUMO

This study investigated the ability of electrically conductive carbon rovings to detect cracks in textile-reinforced concrete (TRC) structures. The key innovation lies in the integration of carbon rovings into the reinforcing textile, which not only contributes to the mechanical properties of the concrete structure but also eliminates the need for an additional sensory system, such as strain gauges, to monitor the structural health. Carbon rovings are integrated into a grid-like textile reinforcement that differs in binding type and dispersion concentration of the styrene butadiene rubber (SBR) coating. Ninety final samples were subjected to a four-point bending test in which the electrical changes of the carbon rovings were measured simultaneously to capture the strain. The mechanical results show that the SBR50-coated TRC samples with circular and elliptical cross-sectional shape achieved, with 1.55 kN, the highest bending tensile strength, which is also captured with a value of 0.65 Ω by the electrical impedance monitoring. The elongation and fracture of the rovings have a significant effect on the impedance mainly due to electrical resistance change. A correlation was found between the impedance change, binding type and coating. This suggests that the elongation and fracture mechanisms are affected by the number of outer and inner filaments, as well as the coating.

4.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628199

RESUMO

Gastrointestinal anastomoses are an important source of postoperative complications. In particular, the ideal suturing material is still the subject of investigation. Therefore, this study aimed to evaluate a newly developed suturing material with elastic properties made from thermoplastic polyurethane (TPU); Polyvinylidene fluoride (PVDF) and TPU were tested in two different textures (round and a modified, "snowflake" structure) in 32 minipigs, with two anastomoses of the small intestine sutured 2 m apart. After 90 days, the anastomoses were evaluated for inflammation, the healing process, and foreign body reactions. A computer-assisted immunohistological analysis of staining for Ki67, CD68, smooth muscle actin (SMA), and Sirius red was performed using TissueFAXS. Additionally, the in vivo elastic properties of the material were assessed by measuring the suture tension in a rabbit model. Each suture was tested twice in three rabbits; No major surgical complications were observed and all anastomoses showed adequate wound healing. The Ki67+ count and SMA area differed between the groups (F (3, 66) = 5.884, p = 0.0013 and F (3, 56) = 6.880, p = 0.0005, respectively). In the TPU-snowflake material, the Ki67+ count was the lowest, while the SMA area provided the highest values. The CD68+ count and collagen I/III ratio did not differ between the groups (F (3, 69) = 2.646, p = 0.0558 and F (3, 54) = 0.496, p = 0.686, respectively). The suture tension measurements showed a significant reduction in suture tension loss for both the TPU threads; Suturing material made from TPU with elastic properties proved applicable for intestinal anastomoses in a porcine model. In addition, our results suggest a successful reduction in tissue incision and an overall suture tension homogenization.


Assuntos
Poliuretanos , Suturas , Anastomose Cirúrgica , Animais , Estudos de Viabilidade , Antígeno Ki-67 , Poliuretanos/química , Coelhos , Suínos , Porco Miniatura
5.
Sensors (Basel) ; 21(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807169

RESUMO

The force-enhanced light coupling between two optical fibres is investigated for the application in a pressure or force sensor, which can be arranged into arrays and integrated into textile surfaces. The optical coupling mechanisms such as the influence of the applied force, the losses at the coupling point and the angular alignment of the two fibres are studied experimentally and numerically. The results reveal that most of the losses occur at the deformation of the pump fibre. Only a small percentage of the cross-coupled light from the pump fibre is actually captured by the probe fibre. Thus, the coupling and therefore the sensor signal can be strongly increased by a proper crossing angle between the fibres, which lead to a coupling efficiency of 3%, a sensitivity improvement of more than 20 dB compared to the orthogonal alignment of the two fibres.

6.
Molecules ; 26(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34885986

RESUMO

Time-resolved optical emission spectroscopy of nanosecond-pulsed discharges ignited in liquid nitrogen between two bismuth electrodes is used to determine the main discharge parameters (electron temperature, electron density and optical thickness). Nineteen lines belonging to the Bi I system and seven to the Bi II system could be recorded by directly plunging the optical fibre into the liquid in close vicinity to the discharge. The lack of data for the Stark parameters to evaluate the broadening of the Bi I lines was solved by taking advantage of the time-resolved information supported by each line to determine them. The electron density was found to decrease exponentially from 6.5 ± 1.5 × 1016 cm-3 200 ns after ignition to 1.0 ± 0.5 × 1016 cm-3 after 1050 ns. The electron temperature was found to be 0.35 eV, close to the value given by Saha's equation.

7.
Chemistry ; 26(50): 11571-11583, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32428318

RESUMO

A systematic variation of the SBA-15 synthesis conditions and their impact on the structural and chemical characteristics are reported. An incremental alteration of the hydrothermal aging temperature and time was used to induce changes of the highly ordered SBA-15 structure. Any effects on the total surface area, mesopores size, micropore contributions, and pore connectivity are amplified by a combined incremental increase of the NH4 F concentration. Based on changes of the unit-cell parameter as a function of the mesopore size, and a feature in the low-angle XRD pattern, useful descriptors for the disorder of the corresponding SBA-15 are identified. An additional analysis of the Brunauer-Emmett-Teller (BET) surface area and pore size distributions enables investigations of the structural integrity of the material. This systematic approach allows the identification of coherencies between the evolution of physical SBA-15 properties. The obtained correlations of the surface and structural characteristics allow the discrimination between highly ordered 2D SBA-15, disordered 3D SBA-15, and highly nonuniform silica fractions with mainly amorphous character. The fluoride-induced disintegration of the silica structure under hydrothermal conditions was also verified by TEM. A direct influence of the structural adaption on the chemical properties of the surface was demonstrated by isopropanol conversion and H/D exchange monitored by FTIR analysis as sensitive probes for acid and redox active surface sites.

8.
Nanotechnology ; 31(46): 465704, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-32853176

RESUMO

In this work, novel heterostructured photocatalysts associating graphitic carbon nitride (g-CN) and SmFeO3 were prepared via a mixing-ultrasonication process. Structural, optical and morphological characterizations demonstrate that the interfacial junction between g-CN and SmFeO3 is well established for all g-CN/SmFeO3 composites prepared with g-CN:SmFeO3 weight ratio of 20:80, 50:50 and 80:20. The g-CN/SmFeO3 (80:20) composite exhibits the highest photocatalytic activity for the degradation of pollutants like the Orange II dye and the tetracycline hydrochloride antibiotic under visible light irradiation. This high photocatalytic activity originates from the enhanced light absorption over the whole visible region compared to pure g-CN and from the improved separation and transfer of photogenerated electron/hole pairs as demonstrated by photoluminescence and photocurrent measurements. A Z-scheme charge carrier transfer mechanism was demonstrated for the photocatalytic reactions. The g-CN/SmFeO3 (80:20) catalyst was also demonstrated to be stable and can be reused up to six times without significant alteration of the activity.

9.
Zentralbl Chir ; 143(5): 488-493, 2018 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-30357796

RESUMO

INTRODUCTION: The risk of spinal cord ischemia is a relevant problem in in fields of open and endovascular thoracoabdominal aortic aneurysm repair (TAAA). Despite all efforts, no therapeutical concept exists, which enables a complete treatment of the TAAA without open branches or fenestrations, and reduces the risk for a spinal cord ischemia (SCI) to the minimum. In this article, we would like to present a new concept based on slow-occluding hydrogel-textile membrane, which could help to reduce the SCI risk during endovascular TAAA repair. CONCEPT: A hydrogel textile membrane is under development, which could be used a functional unit of endovascular stentprosthesis. If in contact with blood, glutathion induces swelling of the induces ongoing swelling of the membrane because of the triggered degradation of the crosslinker. Due to the resulting water uptake of the hydrogel textile membrane and mass increase of the gel, the swelling leads to a stabilization of the membrane. In vitro studies show, that the swelling of the hydrogel textile membrane should lead to a controlled decreasing flow into the aneurysm sac. After a pre-defined period, the membrane is occluded and the aneurysm sac perfusion stops. So, by using the hydrogel textile membrane, a complete treatment of the TAAA can be realized in one procedure without further re-intervention or pre-interventional measures. Furthermore, the risk of a SCI would be minimized. As this treatment concept is under development, only interim results are presented. CONCLUSION: The successful development and usage of a slow-occluding hydrogel textile membrane as a part of endovascular stentprosthesis could help to reduce the risk SCI during endovascular TAAA surgery.


Assuntos
Aneurisma da Aorta Torácica , Implante de Prótese Vascular , Procedimentos Endovasculares , Isquemia do Cordão Espinal , Prótese Vascular , Humanos , Fatores de Risco , Medula Espinal , Isquemia do Cordão Espinal/cirurgia , Stents , Resultado do Tratamento
10.
Angew Chem Int Ed Engl ; 56(28): 8263-8266, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28558157

RESUMO

The new Lewis acid Al(OTeF5 )3 and its acetonitrile adduct CH3 CN→Al(OTeF5 )3 were obtained by a simple one-step synthesis in batches of up to 15 g. Al(OTeF5 )3 and the adduct were characterized by vibrational spectroscopy (IR, Raman) and quantum-chemical calculations. Furthermore, five different salts of the new weakly coordinating anion [Al(OTeF5 )4 ]- were prepared in a two-step procedure. [Ph4 P][Al(OTeF5 )4 ], Cs[Al(OTeF5 )4 ], [Ph3 C][Al(OTeF5 )4 ], as well as the protonated benzene derivatives [C9 H13 ][Al(OTeF5 )4 ] and [C6 H7 ][Al(OTeF5 )4 ] were characterized by low-temperature single-crystal X-ray diffraction and NMR spectroscopy. Arenium salts have rarely been characterized in the solid state and were synthesized in this work in a simplified fashion.

11.
Biomimetics (Basel) ; 9(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786471

RESUMO

In addition to water repellency, superhydrophobic leaves of plants such as Salvinia molesta adsorb oil and separate it from water surfaces. This phenomenon has been the inspiration for a new method of oil-water separation, the bionic oil adsorber (BOA). In this paper, we show how the biological effect can be abstracted and transferred to technical textiles, in this case knitted spacer textiles hydrophobized with a layered silicate, oriented at the biology push approach. Subsequently, the transport of the oil within the bio-inspired textile is analyzed by a three-dimensional fluid simulation. This fluid simulation shows that the textile can be optimized by reducing the pile yarn length, increasing the pile yarn spacing, and increasing the pile yarn diameter. For the first time, it has been possible with this simulation to optimize the bio-inspired textile with regard to oil transport with little effort and thus enable the successful implementation of a self-driven and sustainable oil removal method.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38315312

RESUMO

PURPOSE: Altered hemodynamics caused by the presence of an endovascular device may undermine the success of peripheral stenting procedures. Flow-enhanced stent designs are under investigation to recover physiological blood flow patterns in the treated artery and reduce long-term complications. However, flow-enhanced designs require the development of customised manufacturing processes that consider the complex behaviour of Nickel-Titanium (Ni-Ti). While the manufacturing routes of traditional self-expanding Ni-Ti stents are well-established, the process to introduce alternative stent designs is rarely reported in the literature, with much of this information (especially related to shape-setting step) being commercially sensitive and not reaching the public domain, as yet. METHODS: A reliable manufacturing method was developed and improved to induce a helical ridge onto laser-cut and wire-braided Nickel-Titanium self-expanding stents. The process consisted of fastening the stent into a custom-built fixture that provided the helical shape, which was followed by a shape-setting in air furnace and rapid quenching in cold water. The parameters employed for the shape-setting in air furnace were thoroughly explored, and their effects assessed in terms of the mechanical performance of the device, material transformation temperatures and surface finishing. RESULTS: Both stents were successfully imparted with a helical ridge and the optimal heat treatment parameters combination was found. The settings of 500 °C/30 min provided mechanical properties comparable with the original design, and transformation temperatures suitable for stenting applications (Af = 23.5 °C). Microscopy analysis confirmed that the manufacturing process did not alter the surface finishing. Deliverability testing showed the helical device could be loaded onto a catheter delivery system and deployed with full recovery of the expanded helical configuration. CONCLUSION: This demonstrates the feasibility of an additional heat treatment regime to allow for helical shape-setting of laser-cut and wire-braided devices that may be applied to further designs.

13.
Polymers (Basel) ; 16(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399866

RESUMO

The use of tissue engineering to address the shortcomings of current procedures for tendons and ligaments is promising, but it requires a suitable scaffold that meets various mechanical, degradation-related, scalability-related, and biological requirements. Macroporous textile scaffolds made from appropriate fiber material have the potential to fulfill the first three requirements. This study aimed to investigate the biocompatibility, sterilizability, and functionalizability of a multilayer braided scaffold. These macroporous scaffolds with dimensions similar to those of the human anterior cruciate ligament consist of fibers with appropriate tensile strength and degradation behavior melt-spun from Polycaprolactone (PCL). Two different cross-sectional geometries resulting in significantly different specific surface areas and morphologies were used at the fiber level, and a Chitosan-graft-PCL (CS-g-PCL) surface modification was applied to the melt-spun substrates for the first time. All scaffolds elicited a positive cell response, and the CS-g-PCL modification provided a platform for incorporating functionalization agents such as drug delivery systems for growth factors, which were successfully released in therapeutically effective quantities. The fiber geometry was found to be a variable that could be manipulated to control the amount released. Therefore, scaled, surface-modified textile scaffolds are a versatile technology that can successfully address the complex requirements of tissue engineering for ligaments and tendons, as well as other structures.

14.
Nat Commun ; 15(1): 316, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182589

RESUMO

The knowledge of minority and majority charge carrier properties enables controlling the performance of solar cells, transistors, detectors, sensors, and LEDs. Here, we developed the constant light induced magneto transport method which resolves electron and hole mobility, lifetime, diffusion coefficient and length, and quasi-Fermi level splitting. We demonstrate the implication of the constant light induced magneto transport for silicon and metal halide perovskite films. We resolve the transport properties of electrons and holes predicting the material's effectiveness for solar cell application without making the full device. The accessibility of fourteen material parameters paves the way for in-depth exploration of causal mechanisms limiting the efficiency and functionality of material structures. To demonstrate broad applicability, we further characterized twelve materials with drift mobilities spanning from 10-3 to 103 cm2V-1s-1 and lifetimes varying between 10-9 and 10-3 seconds. The universality of our method its potential to advance optoelectronic devices in various technological fields.

15.
Nanoscale ; 16(5): 2289-2294, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38164662

RESUMO

Control of the optical properties of a nanoparticle (NP) through its structural changes underlies optical data processing, dynamic coloring, and smart sensing at the nanometer scale. Here, we report on the concept of controlling the light scattering by a NP through mixing of weakly miscible chemical elements (Fe and Au), supporting a thermal-induced phase transformation. The transformation corresponds to the transition from a homogeneous metastable solid solution phase of the (Fe,Au) NP towards an equilibrium biphasic Janus-type NP. We demonstrate that the phase transformation is thermally activated by laser heating up to a threshold of 800 °C (for NPs with a size of hundreds of nm), leading to the associated changes in the light scattering and color of the NP. The results thereby pave the way for the implementation of optical sensors triggered by a high temperature at the nanometer scale via NPs based on metal alloys.

16.
Adv Mater ; : e2401611, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848668

RESUMO

Integrating tunneling magnetoresistance (TMR) effect in memristors is a long-term aspiration because it allows to realize multifunctional devices, such as multi-state memory and tunable plasticity for synaptic function. However, the reported TMR in different multiferroic tunnel junctions is limited to 100%. This work demonstrates a giant TMR of -266% in La0.6Sr0.4MnO3(LSMO)/poly(vinylidene fluoride)(PVDF)/Co memristor with thin organic barrier. Different from the ferroelectricity-based memristors, this work discovers that the voltage-driven florine (F) motion in the junction generates a huge reversible resistivity change up to 106% with nanosecond (ns) timescale. Removing F from PVDF layer suppresses the dipole field in the tunneling barrier, thereby significantly enhances the TMR. Furthermore, the TMR can be tuned by different polarizing voltage due to the strong modification of spin-polarization at the LSMO/PVDF interface upon F doping. Combining of high TMR in the organic memristor paves the way to develop high-performance multifunctional devices for storage and neuromorphic applications.

17.
Int J Health Econ Manag ; 23(4): 585-607, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37103662

RESUMO

The ability of various policy activities to reduce the reproduction rate of the COVID-19 disease is widely discussed. Using a stringency index that comprises a variety of lockdown levels, such as school and workplace closures, we analyze the effectiveness of government restrictions. At the same time, we investigate the capacity of a range of lockdown measures to lower the reproduction rate by considering vaccination rates and testing strategies. By including all three components in an SIR (Susceptible, Infected, Recovery) model, we show that a general and comprehensive test strategy is instrumental in reducing the spread of COVID-19. The empirical study demonstrates that testing and isolation represent a highly effective and preferable approach towards overcoming the pandemic, in particular until vaccination rates have risen to the point of herd immunity.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Controle de Doenças Transmissíveis
18.
Nanomaterials (Basel) ; 13(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37947733

RESUMO

I-III-VI2 group quantum dots (QDs) have attracted high attention in photoelectronic conversion applications, especially for QD-sensitized solar cells (QDSSCs). This group of QDs has become the mainstream light-harvesting material in QDSSCs due to the ability to tune their electronic properties through size, shape, and composition and the ability to assemble the nanocrystals on the surface of TiO2. Moreover, these nanocrystals can be produced relatively easily via cost-effective solution-based synthetic methods and are composed of low-toxicity elements, which favors their integration into the market. This review describes the methods developed to prepare I-III-VI2 QDs (AgInS2 and CuInS2 were excluded) and control their optoelectronic properties to favor their integration into QDSSCs. Strategies developed to broaden the optoelectronic response and decrease the surface-defect states of QDs in order to promote the fast electron injection from QDs into TiO2 and achieve highly efficient QDSSCs will be described. Results show that heterostructures obtained after the sensitization of TiO2 with I-III-VI2 QDs could outperform those of other QDSSCs. The highest power-conversion efficiency (15.2%) was obtained for quinary Cu-In-Zn-Se-S QDs, along with a short-circuit density (JSC) of 26.30 mA·cm-2, an open-circuit voltage (VOC) of 802 mV and a fill factor (FF) of 71%.

19.
J Mech Behav Biomed Mater ; 138: 105568, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459705

RESUMO

Much of our current understanding of the performance of self-expanding wire-braided stents is based on mechanical testing of Nitinol-based or polymeric non-bioresorbable (e.g. PET, PP etc.) devices. The small amount of data present for bioresorbable devices characterizes stents with big nominal diameters (D>6mm), with a distinct lack of data describing the mechanical performance of small-diameter wire-braided bioresorbable devices (D≤5mm). This study presents a systematic investigation of the mechanical performance of wire-braided bioresorbable Poly-L-Lactic Acid (PLLA) stents having different braiding angles (α=45° , α=30°, and α=20°), wire diameters (d=100µm, and d=150µm), wire count (n=24 and n=48), braiding patterns (1:1-1, 2:2-1 and 1:1-2) and stent diameters (D=5mm, D=4mm, and D=2.5mm). Mechanical characterisation was carried out by evaluating the radial, longitudinal and bending response of the devices. Our results showed that smaller braid angles, larger wire diameters, higher number of wires and smaller stent diameter led to an increase in the stent mechanical properties across each of the three mechanical tests performed. It was found that geometrical features of a polymeric braided stent could be adapted to achieve a similar performance to the one of a metallic device. In particular, substantial increases in stent mechanical properties were found for a low braiding angle and when the braiding pattern followed a one-over-one-under configuration with two wires in parallel (1:1-2). Finally, it was shown that a mathematical model proposed in literature for metal braided stents can provide reasonable predictions also of polymeric stent performance but just in circumstances where wire friction does not have a dominant role. This study presents a wide range of experimental data that can provide an important reference for further development of wire-braided bioresorbable devices.


Assuntos
Poliésteres , Stents , Modelos Teóricos , Polímeros
20.
J Control Release ; 363: 376-388, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734672

RESUMO

Polyurethanes are a versatile and highly tunable class of materials that possess unique properties including high tensile strength, abrasion and fatigue resistance, and flexibility at low temperatures. The tunability of polyurethane properties has allowed this class of polymers to become ubiquitous in our daily lives in fields as diverse as apparel, appliances, construction, and the automotive industry. Additionally, polyurethanes with excellent biocompatibility and hemocompatibility can be synthesized, enabling their use as biomaterials in the medical field. The tunable nature of polyurethane biomaterials also makes them excellent candidates as drug delivery vehicles, which is the focus of this review. The fundamental idea we aim to highlight in this article is the structure-property-function relationships found in polyurethane systems. Specifically, the chemical structure of the polymer determines its macroscopic properties and dictates the functions for which it will perform well. By exploring the structure-property-function relationships for polyurethanes, we aim to elucidate the fundamental properties that can be tailored to achieve controlled drug release and empower researchers to design new polyurethane systems for future drug delivery applications.


Assuntos
Materiais Biocompatíveis , Poliuretanos , Materiais Biocompatíveis/química , Poliuretanos/química , Sistemas de Liberação de Medicamentos , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA