RESUMO
BACKGROUND: Many high-dose groups demonstrate increased leukaemia risks, with risk greatest following childhood exposure; risks at low/moderate doses are less clear. METHODS: We conducted a pooled analysis of the major radiation-associated leukaemias (acute myeloid leukaemia (AML) with/without the inclusion of myelodysplastic syndrome (MDS), chronic myeloid leukaemia (CML), acute lymphoblastic leukaemia (ALL)) in ten childhood-exposed groups, including Japanese atomic bomb survivors, four therapeutically irradiated and five diagnostically exposed cohorts, a mixture of incidence and mortality data. Relative/absolute risk Poisson regression models were fitted. RESULTS: Of 365 cases/deaths of leukaemias excluding chronic lymphocytic leukaemia, there were 272 AML/CML/ALL among 310,905 persons (7,641,362 person-years), with mean active bone marrow (ABM) dose of 0.11 Gy (range 0-5.95). We estimated significant (P < 0.005) linear excess relative risks/Gy (ERR/Gy) for: AML (n = 140) = 1.48 (95% CI 0.59-2.85), CML (n = 61) = 1.77 (95% CI 0.38-4.50), and ALL (n = 71) = 6.65 (95% CI 2.79-14.83). There is upward curvature in the dose response for ALL and AML over the full dose range, although at lower doses (<0.5 Gy) curvature for ALL is downwards. DISCUSSION: We found increased ERR/Gy for all major types of radiation-associated leukaemia after childhood exposure to ABM doses that were predominantly (for 99%) <1 Gy, and consistent with our prior analysis focusing on <100 mGy.
Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia , Neoplasias Induzidas por Radiação , Exposição à Radiação , Humanos , Fatores de Risco , Leucemia/epidemiologia , Exposição à Radiação/efeitos adversos , Incidência , Radiação Ionizante , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Doses de RadiaçãoRESUMO
A significant source of information on radiation-induced biological effects following in-utero irradiation stems from studies of atomic bomb survivors who were pregnant at the time of exposure in Hiroshima, and to a lesser extent, from survivors in Nagasaki. Dose estimates to the developing fetus for these survivors have been assigned in prior dosimetry systems of the Radiation Effects Research Foundation as the dose to the uterine wall within the non-pregnant adult stylized phantom, originally designed for the dosimetry system DS86 and then carried forward in DS02. In a prior study, a new J45 (Japanese 1945) series of high-resolution phantoms of the adult pregnant female at 8 weeks, 15 weeks, 25 weeks, and 38-weeks post-conception was presented. Fetal and maternal organ doses were estimated by computationally exposing the pregnant female phantom series to DS02 free-in-air cumulative photon and neutron fluences at three distances from the hypocenter at both Hiroshima and Nagasaki under idealized frontal (AP) and isotropic (ISO) particle incidence. In this present study, this work was extended using realistic angular fluences (480 directions) from the DS02 system for seven radiation source terms, nine different radiation dose components, and five shielding conditions. In addition, to explore the effects of fetal position within the womb, four new phantoms were created and the same irradiation scenarios were performed. General findings are that the current DS02 fetal dose surrogate overestimates values of fetal organ dose seen in the J45 phantoms towards the cranial end of the fetus, especially in the later stages of pregnancy. For example, for in-open exposures at 1000 m in Hiroshima, the ratio of J45 fetal brain dose to DS02 uterine wall dose is 0.90, 0.82, and 0.70 at 15 weeks, 25 weeks, and 38-weeks, respectively, for total gamma exposures, and are 0.64, 0.44, and 0.37 at these same gestational ages for total neutron exposures. For organs in the abdominal and pelvic regions of the fetus, dose gradients across gestational age flatten and later reverse, so that DS02 fetal dosimetry begins to underestimate values of fetal organ dose as seen in the J45 phantoms. For example, for the same exposure scenario, the ratios of J45 fetal kidney dose to DS02 uterine wall dose are about 1.09 from 15 to 38 weeks for total gamma dose, and are 1.30, 1.56, and 1.75 at 15 weeks, 25 weeks, and 38 weeks, respectively, for the total neutron dose. Results using the new fetal positioning phantoms show this trend reversing for a head-up, breach fetal position. This work supports previous findings that the J45 pregnant female phantom series offers significant opportunities for gestational age-dependent assessment of fetal organ dose without the need to invoke the uterine wall as a fetal organ surrogate.
Assuntos
Guerra Nuclear , Lesões por Radiação , Adulto , Feminino , Humanos , Gravidez , Sobreviventes de Bombas Atômicas , Radiometria/métodos , Sobreviventes , Feto , JapãoRESUMO
The radiation exposure estimates for the atomic bomb survivors at Hiroshima and Nagasaki have evolved over the past several decades, reflecting a constant strive by the Radiation Effects Research Foundation (RERF) to provide thorough dosimetry to their cohort. Recently, a working group has introduced a new series of anatomical models, called the J45 phantom series, which improves upon those currently used at RERF through greater age resolution, sex distinction, anatomical realism, and organ dose availability. To evaluate the potential dosimetry improvements that would arise from their use in an RERF Dosimetry System, organ doses in the J45 series are evaluated here using environmental fluence data for 20 generalized survivor scenarios pulled directly from the current dosimetry system. The energy- and angle-dependent gamma and neutron fluences were converted to a source term for use in MCNP6, a modern Monte Carlo radiation transport code. Overall, the updated phantom series would be expected to provide dose improvements to several important organs, including the active marrow, colon, and stomach wall (up to 20, 20, and 15% impact on total dose, respectively). The impacts were especially significant for neutron dose estimates (up to a two-fold difference) and within organs which were unavailable in the previous phantom series. These impacts were consistent across the 20 scenarios and are potentially even greater when biological effectiveness of the neutron dose component is considered. The entirety of the dosimetry results for all organs are available as supplementary data, providing confident justification for potential future DS workflows utilizing the J45 phantom series.
Assuntos
Sobreviventes de Bombas Atômicas , Radiometria , Adulto , Criança , Humanos , Japão , Método de Monte Carlo , Imagens de Fantasmas , Radiometria/métodosRESUMO
In a previous study, posture-dependent dose coefficients (DCs) for photon external exposures were calculated using the adult male and female mesh-type reference computational phantoms (MRCPs) of the International Commission on Radiological Protection (ICRP) that had been transformed into five non-standing postures (i.e. walking, sitting, bending, kneeling, and squatting). As an extension, the present study was conducted to establish another DC dataset for external exposures to neutrons by performing Monte Carlo radiation transport simulations with the adult male and female MRCPs in the five non-standing postures. The resulting dataset included the DCs for absorbed doses (i.e., organ/tissue-averaged absorbed doses) delivered to 29 individual organs/tissues, and for effective doses for neutron energies ranging from 10-9 to 104 MeV in six irradiation geometries: antero-posterior (AP), posteroanterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT), and isotropic (ISO) geometries. The comparison of DCs for the non-standing MRCPs with those of the standing MRCPs showed significant differences. In the lateral irradiation geometries, for example, the standing MRCPs overestimate the breast DCs of the squatting MRCPs by up to a factor of 4 due to the different arm positions but underestimate the gonad DCs by up to about 17 times due to the different leg positions. The impact of different postures on effective doses was generally less than that on organ doses but still significant; for example, the standing MRCPs overestimate the effective doses of the bending MRCPs only by 20% in the AP geometry at neutron energies less than 50 MeV, but underestimate those of the kneeling MRCPs by up to 40% in the lateral geometries at energies less than 0.1 MeV.
Assuntos
Nêutrons , Postura , Doses de Radiação , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Exposição à RadiaçãoRESUMO
PURPOSE: To demonstrate an on-demand and nearly automatic method for fabricating tissue-equivalent physical anthropomorphic phantoms for imaging and dosimetry applications using a dual nozzle thermoplastic three-dimensional (3D) printer and two types of plastic. METHODS: Two 3D printing plastics were investigated: (a) Normal polylactic acid (PLA) as a soft tissue simulant and (b) Iron PLA (PLA-Fe), a composite of PLA and iron powder, as a bone simulant. The plastics and geometry of a 1-yr-old computational phantom were combined with a dual extrusion 3D printer to fabricate an anthropomorphic imaging phantom. The volumetric fill density of the 3D-printed parts was varied to approximate tissues of different radiographic density using a calibration curve relating the printer infill density setting to measured CT number. As a demonstration of our method we printed a 10 cm axial cross-section of the computational phantom's torso at full scale. We imaged the phantom on a CT scanner and compared HU values to those of a 1-yr-old patient and a commercial 5-yr-old physical phantom. RESULTS: The phantom was printed in six parts over the course of a week. The printed phantom included 30 separate anatomical regions including soft tissue remainder, lungs (left and right), heart, esophagus, rib cage (left and right ribs 1 to 10), clavicles (left and right), scapulae (left and right), thoracic vertebrae (one solid object defining thoracic vertebrae T1 to T9). CT scanning of the phantom showed five distinct radiographic regions (heart, lung, soft tissue remainder, bone, and air cavity) despite using only two types of plastic. The 3D-printed phantom demonstrated excellent similarity to commercially available phantoms, although key limitations in the printer and printing materials leave opportunity for improvement. CONCLUSION: Patient-specific anthropomorphic phantoms can be 3D printed and assembled in sections for imaging and dosimetry applications. Such phantoms will be useful for dose verification purposes when commercial phantoms are unavailable for purchase in the specific anatomies of interest.
Assuntos
Impressão Tridimensional , Radiometria , Criança , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X , TroncoRESUMO
In a recent epidemiologic risk assessment on late health effects of patients treated with radioactive iodine (RAI), organ/tissue doses of the patients were estimated based on iodine-131Svalues derived from the reference computational phantoms of the International Commission on Radiological Protection (ICRP). However, the use of theSvalues based on the reference phantoms may lead to significant biases in the estimated doses of patients whose body sizes (height and weight) are significantly different from the reference body sizes. To fill this critical gap, we established a comprehensive dataset of body-size-dependent iodine-131Svalues (rTâ thyroid) for 30 radiosensitive target organs/tissues by performing Monte Carlo dose calculations coupled with a total of 212 adult male and female computational phantoms in different heights and weights. We observed that theSvalues tend to decrease with increasing body height; for example, theSvalue (gonads â thyroid) of the 160 cm male phantom is about 3 times higher than that of the 190 cm male phantom at the 70 kg weight. We also observed that theSvalues tend to decrease with increasing body weight for some organs/tissues; for example, theSvalue (skin â thyroid) of the 45 kg female phantom is about two times higher than that of the 130 kg female phantom at the 160 cm height. For other organs/tissues, which are relatively far from the thyroid, in contrast, theSvalues tend to increase with increasing body weight; for example, theSvalue (bladder â thyroid) of the 45 kg female phantom is about 2 times lower than that of the 130 kg female phantom. Overall, the majority of the body-size-dependentSvalues deviated to within 25% from those of the reference phantoms. We believe that the use of body-size-dependentSvalues in dose reconstructions should help quantify the dosimetric uncertainty in epidemiologic investigations of RAI-treated patients.
Assuntos
Iodo , Neoplasias da Glândula Tireoide , Adulto , Tamanho Corporal , Feminino , Humanos , Radioisótopos do Iodo , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , RadiometriaRESUMO
Significant efforts such as the Pediatric Proton/Photon Consortium Registry (PPCR) involving multiple proton therapy centers have been made to conduct collaborative studies evaluating outcomes following proton therapy. As a groundwork dosimetry effort for the late effect investigation, we developed a Monte Carlo (MC) model of proton pencil beam scanning (PBS) to estimate organ/tissue doses of pediatric patients at the Maryland Proton Treatment Center (MPTC), one of the proton centers involved in the PPCR. The MC beam modeling was performed using the TOPAS (TOol for PArticle Simulation) MC code and commissioned to match measurement data within 1% for range, and 0.3 mm for spot sizes. The established MC model was then tested by calculating organ/tissue doses for sample intracranial and craniospinal irradiations on whole-body pediatric computational human phantoms. The simulated dose distributions were compared with the treatment planning system dose distributions, showing the 3 mm/3% gamma index passing rates of 94%-99%, validating our simulations with the MC model. The calculated organ/tissue doses per prescribed doses for the craniospinal irradiations (1 mGy Gy-1 to 1 Gy Gy-1) were generally much higher than those for the intracranial irradiations (2.1 µGy Gy-1 to 0.1 Gy Gy-1), which is due to the larger field coverage of the craniospinal irradiations. The largest difference was observed at the adrenal dose, i.e. â¼3000 times. In addition, the calculated organ/tissue doses were compared with those calculated with a simplified MC model, showing that the beam properties (i.e. spot size, spot divergence, mean energy, and energy spread) do not significantly influence dose calculations despite the limited irradiation cases. This implies that the use of the MC model commissioned to the MPTC measurement data might be dosimetrically acceptable for patient dose reconstructions at other proton centers particularly when their measurement data are unavailable. The developed MC model will be used to reconstruct organ/tissue doses for MPTC pediatric patients collected in the PPCR.
Assuntos
Encéfalo/efeitos da radiação , Terapia com Prótons , Radiometria , Coluna Vertebral/efeitos da radiação , Criança , Humanos , Maryland , Modelos Biológicos , Método de Monte Carlo , Neoplasias Induzidas por Radiação/epidemiologia , Lesões por Radiação/epidemiologia , Dosagem RadioterapêuticaRESUMO
The risks associated with exposure to external fields of ionising radiation are important to quantify in order to provide guidance towards public and worker protection. In Publication 116 of 2010, the International Commission on Radiological Protection (ICRP) published adult male and female fluence-to-dose coefficients (henceforth referred to as dose coefficients) for external exposures to six types of idealised neutron fields. However, ICRP 116 dose coefficients are not appropriate for applications involving children due to their smaller body weight and stature. Our current work details dose coefficient calculations for children and young adolescents using the UF-NCI pediatric hybrid phantoms at all neutron energies considered in ICRP 116 (0.001 eV to 10 GeV); those dose coefficients with energy up to 150 MeV are discussed. The hybrid UF-NCI phantoms are divided into five separate age groups: newborn, 1, 5, 10, and 15 years. For these phantoms, we calculated dose coefficients for the six idealised neutron fields for 28 organs, two bone tissues, and the overall whole body effective dose. All calculations were performed using the MCNP6 radiation transport code. To validate our methodology, we first calculated dose coefficients for the ICRP adult male and female phantoms and confirmed our ability to reproduce the values published within ICRP 116. The same methodology was then applied to calculate dose coefficients for the UF-NCI pediatric phantoms. Energy-dependent trends were observed in the neutron dose coefficients for pediatric phantoms: below 100 keV, dose increases with phantom age (a proxy for body size); however, above 100 keV, the opposite trend was observed. Comparisons between field geometries showed varying trends depending on the location of the organ within the body. Explanations for these trends are also explored within. Our results are the first comprehensive set of neutron dose coefficients derived for children and young adolescents using the newest generation of hybrid phantoms. The primary application of the pediatric neutron dose coefficients presented in this work will be for a planned effort to update the dosimetry for the Japanese atomic bomb survivors.
Assuntos
Nêutrons , Doses de Radiação , Exposição à Radiação , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Nêutrons/efeitos adversos , Imagens de FantasmasRESUMO
BACKGROUND: Daily IGRT images show day-to-day anatomical variations in patients undergoing fractionated prostate radiotherapy. This is of particular importance in particle beam treatments. PURPOSE: To develop a digital phantom series showing variation in pelvic anatomy for evaluating treatment planning and IGRT procedures in particle radiotherapy. METHODS: A pelvic phantom series was developed from the planning MRI and kVCT (planning CT) images along with six of the daily serial MVCT images taken of a single patient treated with a full bladder on a Tomotherapy unit. The selected patient had clearly visible yet unexceptional internal anatomy variation. Prostate, urethra, bladder, rectum, bowel, bowel gas, bone and soft tissue were contoured and a single Hounsfield Unit was assigned to each region. Treatment plans developed on the kVCT for photon, proton and carbon beams were recalculated on each phantom to demonstrate a clinical application of the series. Proton plans were developed with and without robust optimization. RESULTS: Limited to axial slices with prostate, the bladder volume varied from 6 to 46 cm3, the rectal volume (excluding gas) from 22 to 52 cm3, and rectal gas volume from zero to 18 cm3. The water equivalent path length to the prostate varied by up to 1.5 cm . The variations resulted in larger changes in the RBE-weighted Dose Volume Histograms of the non-robust proton plan and the carbon plan compared to the robust proton plan, the latter similar to the photon plan. The prostate coverage (V100%) decreased by an average of 18% in the carbon plan, 16% in the non-robust proton plan, 1.8% in the robust proton plan, and 4.4% in the photon plan. The volume of rectum receiving 75% of the prescription dose (V75%) increased by an average of 3.7 cm3, 4.7 cm3, 1.9 cm3, and 0.6 cm3 in those four plans, respectively. CONCLUSIONS: The digital pelvic phantom series provides for quantitative investigation of IGRT procedures and new methods for improving accuracy in particle therapy and may be used in cross-institutional comparisons for clinical trial quality assurance.
Assuntos
Neoplasias da Próstata , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Masculino , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Reto/diagnóstico por imagem , Radioterapia de Intensidade Modulada/métodos , Pelve/diagnóstico por imagem , Fracionamento da Dose de Radiação , Carbono , Dosagem Radioterapêutica , Terapia com Prótons/métodosRESUMO
ABSTRACT: Organ dosimetry data of the atomic bomb survivors and the resulting cancer risk models derived from these data are currently assessed within the DS02 dosimetry system developed through the Joint US-Japan Dosimetry Working Group. In DS02, the anatomical survivor models are limited to three hermaphroditic stylized phantoms-an adult (55 kg), a child (19.8 kg), and an infant (9.7 kg)-that were originally designed for the preceding DS86 dosimetry system. As such, organ doses needed for assessment of in-utero cancer risks to the fetus have continued to rely upon the use of the uterine wall in the adult non-pregnant stylized phantom as the dose surrogate for all fetal organs regardless of gestational age. To address these limitations, the Radiation Effects Research Foundation (RERF) Working Group on Organ Dose (WGOD) has established the J45 (Japan 1945) series of high-resolution voxel phantoms, which were derived from the UF/NCI series of hybrid phantoms and scaled to match mid-1940s Japanese body morphometries. The series includes male and female phantoms-newborn to adult-and four pregnant female phantoms at gestational ages of 8, 15, 25, and 38 wk post-conception. In previous studies, we have reported organ dose differences between those reported by the DS02 system and those computed by the WGOD using 3D Monte Carlo radiation transport simulations of atomic bomb gamma-ray and neutron fields for the J45 phantoms series in their traditional "standing" posture, with some variations in their facing direction relative to the bomb hypocenter. In this present study, we present the J45 pregnant female phantoms in both a "kneeling" and "lying" posture and assess the dosimetric impact of these more anatomically realistic survivor models in comparison to current organ doses given by the DS02 system. For the kneeling phantoms facing the bomb hypocenter, organ doses from bomb source photon spectra were shown to be overestimated by the DS02 system by up to a factor of 1.45 for certain fetal organs and up to a factor of 1.17 for maternal organs. For lying phantoms with their feet in the direction of the hypocenter, fetal organ doses from bomb source photon spectra were underestimated by the DS02 system by factors as low as 0.77, while maternal organ doses were overestimated by up to a factor of 1.38. Organs doses from neutron contributions to the radiation fields exhibited an increasing overestimation by the DS02 stylized phantoms as gestational age increased. These discrepancies are most evident in fetal organs that are more posterior within the mother's womb, such as the fetal brain. Further analysis revealed that comparison of these postures to the original standing posture indicate significant dose differences for both maternal and fetal organ doses depending on the type of irradiation. Results from this study highlight the degree to which the existing DS02 system can differ from organ dosimetry based upon 3D radiation transport simulations using more anatomically realistic models of those survivors exposed during pregnancy.
Assuntos
Sobreviventes de Bombas Atômicas , Lesões por Radiação , Recém-Nascido , Criança , Adulto , Gravidez , Humanos , Masculino , Feminino , Radiometria/métodos , Feto/efeitos da radiação , PosturaRESUMO
Purpose: The physical properties of protons lower doses to surrounding normal tissues compared with photons, potentially reducing acute and long-term adverse effects, including subsequent cancers. The magnitude of benefit is uncertain, however, and currently based largely on modeling studies. Despite the paucity of directly comparative data, the number of proton centers and patients are expanding exponentially. Direct studies of the potential risks and benefits are needed in children, who have the highest risk of radiation-related subsequent cancers. The Pediatric Proton and Photon Therapy Comparison Cohort aims to meet this need. Methods and Materials: We are developing a record-linkage cohort of 10,000 proton and 10,000 photon therapy patients treated from 2007 to 2022 in the United States and Canada for pediatric central nervous system tumors, sarcomas, Hodgkin lymphoma, or neuroblastoma, the pediatric tumors most frequently treated with protons. Exposure assessment will be based on state-of-the-art dosimetry facilitated by collection of electronic radiation records for all eligible patients. Subsequent cancers and mortality will be ascertained by linkage to state and provincial cancer registries in the United States and Canada, respectively. The primary analysis will examine subsequent cancer risk after proton therapy compared with photon therapy, adjusting for potential confounders and accounting for competing risks. Results: For the primary aim comparing overall subsequent cancer rates between proton and photon therapy, we estimated that with 10,000 patients in each treatment group there would be 80% power to detect a relative risk of 0.8 assuming a cumulative incidence of subsequent cancers of 2.5% by 15 years after diagnosis. To date, 9 institutions have joined the cohort and initiated data collection; additional centers will be added in the coming year(s). Conclusions: Our findings will affect clinical practice for pediatric patients with cancer by providing the first large-scale systematic comparison of the risk of subsequent cancers from proton compared with photon therapy.
RESUMO
Dose monitoring in CT patients requires accurate dose estimation but most of the CT dose calculation tools are based on Caucasian computational phantoms. We established a library of organ dose conversion coefficients for Korean adults by using four Korean adult male and two female voxel phantoms combined with Monte Carlo simulation techniques. We calculated organ dose conversion coefficients for head, chest, abdomen and pelvis, and chest-abdomen-pelvis scans, and compared the results with the existing data calculated from Caucasian phantoms. We derived representative organ doses for Korean adults using Korean CT dose surveys combined with the dose conversion coefficients. The organ dose conversion coefficients from the Korean adult phantoms were slightly greater than those of the ICRP reference phantoms: up to 13% for the brain doses in head scans and up to 10% for the dose to the small intestine wall in abdominal scans. We derived Korean representative doses to major organs in head, chest, and AP scans using mean CTDIvol values extracted from the Korean nationwide surveys conducted in 2008 and 2017. The Korean-specific organ dose conversion coefficients should be useful to readily estimate organ absorbed doses for Korean adult male and female patients undergoing CT scans.
RESUMO
Objective. We conducted a Monte Carlo study to comprehensively investigate the fetal dose resulting from proton pencil beam scanning (PBS) craniospinal irradiation (CSI) during pregnancy.Approach. The gestational-age dependent pregnant phantom series developed at the University of Florida (UF) were converted into DICOM-RT format (CT images and structures) and imported into a treatment planning system (TPS) (Eclipse v15.6) commissioned to a IBA PBS nozzle. A proton PBS CSI plan (prescribed dose: 36 Gy) was created on the phantoms. The TOPAS MC code was used to simulate the proton PBS CSI on the phantoms, for which MC beam properties at the nozzle exit (spot size, spot divergence, mean energy, and energy spread) were matched to IBA PBS nozzle beam measurement data. We calculated mean absorbed doses for 28 organs and tissues and whole body of the fetus at eight gestational ages (8, 10, 15, 20, 25, 30, 35, and 38 weeks). For contextual purposes, the fetal organ/tissue doses from the treatment planning CT scan of the mother's head and torso were estimated using the National Cancer Institute dosimetry system for CT (NCICT, Version 3) considering a low-dose CT protocol (CTDIvol: 8.97 mGy).Main results. The majority of the fetal organ/tissue doses from the proton PBS CSI treatment fell within a range of 3-6 mGy. The fetal organ/tissue doses for the 38 week phantom showed the largest variation with the doses ranging from 2.9 mGy (adrenals) to 8.2 mGy (eye lenses) while the smallest variation ranging from 3.2 mGy (oesophagus) to 4.4 mGy (brain) was observed for the doses for the 20 week phantom. The fetal whole-body dose ranged from 3.7 mGy (25 weeks) to 5.8 mGy (8 weeks). Most of the fetal doses from the planning CT scan fell within a range of 7-13 mGy, approximately 2-to-9 times lower than the fetal dose equivalents of the proton PBS CSI treatment (assuming a quality factor of 7).Significance. The fetal organ/tissue doses observed in the present work will be useful for one of the first clinically informative predictions on the magnitude of fetal dose during proton PBS CSI during pregnancy.
Assuntos
Radiação Cranioespinal , Terapia com Prótons , Feminino , Feto/diagnóstico por imagem , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Gravidez , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodosRESUMO
Monte Carlo (MC) methods are considered the gold-standard approach to dose estimation for normal tissues outside the treatment field (out-of-field) in proton therapy. However, the physics of secondary particle production from high-energy protons are uncertain, particularly for secondary neutrons, due to challenges in performing accurate measurements. Instead, various physics models have been developed over the years to reenact these high-energy interactions based on theory. It should thus be acknowledged that MC users must currently accept some unknown uncertainties in out-of-field dose estimates. In the present study, we compared three MC codes (MCNP6, PHITS, and TOPAS) and their available physics models to investigate the variation in out-of-field normal tissue dosimetry for pencil beam scanning proton therapy patients. Total yield and double-differential (energy and angle) production of two major secondary particles, neutrons and gammas, were determined through irradiation of a water phantom at six proton energies (80, 90, 100, 110, 150, and 200 MeV). Out-of-field normal tissue doses were estimated for intracranial irradiations of 1-, 5-, and 15-year-old patients using whole-body computational phantoms. Notably, the total dose estimates for each out-of-field organ varied by approximately 25% across the three codes, independent of its distance from the treatment volume. Dose discrepancies amongst the codes were linked to the utilized physics model, which impacts the characteristics of the secondary radiation field. Using developer-recommended physics, TOPAS produced both the highest neutron and gamma doses to all out-of-field organs from all examined conditions; this was linked to its highest yields of secondary particles and second hardest energy spectra. Subsequent results when using other physics models found reduced yields and energies, resulting in lower dose estimates. Neutron dose estimates were the most impacted by physics model choice, and thus the variation in out-of-field dose estimates may be even larger than 25% when considering biological effectiveness.
Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Radiometria/métodos , Prótons , Dosagem Radioterapêutica , Método de Monte CarloRESUMO
ABSTRACT: Specific absorbed fractions (SAFs) are key components in the workflow of internal exposure assessment following the intake of a radionuclide, allowing quick conversion of particle energy released in a source region to the expected absorbed dose in target regions throughout the body. For data completeness, SAFs for spontaneous fission neutron emitters are currently needed for the recently adopted ICRP reference pediatric voxel phantom series. With 77 source regions within each reference individual and 28 radionuclides decaying via spontaneous fission, full Monte Carlo simulation requires significant computation time. In order to reduce this burden, a novel method for neutron SAF estimation was undertaken. The Monte Carlo N-Particle version 6.1 (MCNP6) simulation package was chosen to simulate the 252 Cf Watt fission neutron spectrum originating from 15 source regions in each phantom; dose estimation within 41 target tissues allowed for assessment of the SAF value for each source-target pair. For the remaining source regions, chord length distributions were computed using MATLAB code to determine the separation between the source-target pairs within the pediatric phantom series. These distance distributions were used in conjunction with a 252 Cf neutron dose point kernel calculated in soft tissue, which was modified to account for the source region's depth from the surface of the body. Lastly, the 252 Cf SAF dataset was extended to the other 27 spontaneous fission neutron emitters based on differences in the Watt fission spectrum parameters of each radionuclide. This methodology has been shown to accurately estimate spontaneous fission neutron SAFs to within 20% of the Monte Carlo estimated value for most source-target pairs in the ICRP reference pediatric series.
Assuntos
Nêutrons , Radioisótopos , Criança , Simulação por Computador , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Radiometria/métodosRESUMO
Purpose.Radiation epidemiology studies of childhood cancer survivors treated in the pre-computed tomography (CT) era reconstruct the patients' treatment fields on computational phantoms. For such studies, the phantoms are commonly scaled to age at the time of radiotherapy treatment because age is the generally available anthropometric parameter. Several reference size phantoms are used in such studies, but reference size phantoms are only available at discrete ages (e.g.: newborn, 1, 5, 10, 15, and Adult). When such phantoms are used for RT dose reconstructions, the nearest discrete-aged phantom is selected to represent a survivor of a specific age. In this work, we (1) conducted a feasibility study to scale reference size phantoms at discrete ages to various other ages, and (2) evaluated the dosimetric impact of using exact age-scaled phantoms as opposed to nearest age-matched phantoms at discrete ages.Methods.We have adopted the University of Florida/National Cancer Institute (UF/NCI) computational phantom library for our studies. For the feasibility study, eight male and female reference size UF/NCI phantoms (5, 10, 15, and 35 years) were downscaled to fourteen different ages which included next nearest available lower discrete ages (1, 5, 10 and 15 years) and the median ages at the time of RT for Wilms' tumor (3.9 years), craniospinal (8.0 years), and all survivors (9.1 years old) in the Childhood Cancer Survivor Study (CCSS) expansion cohort treated with RT. The downscaling was performed using our in-house age scaling functions (ASFs). To geometrically validate the scaling, Dice similarity coefficient (DSC), mean distance to agreement (MDA), and Euclidean distance (ED) were calculated between the scaled and ground-truth discrete-aged phantom (unscaled UF/NCI) for whole-body, brain, heart, liver, pancreas, and kidneys. Additionally, heights of the scaled phantoms were compared with ground-truth phantoms' height, and the Centers for Disease Control and Prevention (CDC) reported 50th percentile height. Scaled organ masses were compared with ground-truth organ masses. For the dosimetric assessment, one reference size phantom and seventeen body-size dependent 5-year-old phantoms (9 male and 8 female) of varying body mass indices (BMI) were downscaled to 3.9-year-old dimensions for two different radiation dose studies. For the first study, we simulated a 6 MV photon right-sided flank field RT plan on a reference size 5-year-old and 3.9-year-old (both of healthy BMI), keeping the field size the same in both cases. Percent of volume receiving dose ≥15 Gy (V15) and the mean dose were calculated for the pancreas, liver, and stomach. For the second study, the same treatment plan, but with patient anatomy-dependent field sizes, was simulated on seventeen body-size dependent 5- and 3.9-year-old phantoms with varying BMIs. V15, mean dose, and minimum dose received by 1% of the volume (D1), and by 95% of the volume (D95) were calculated for pancreas, liver, stomach, left kidney (contralateral), right kidney, right and left colons, gallbladder, thoracic vertebrae, and lumbar vertebrae. A non-parametric Wilcoxon rank-sum test was performed to determine if the dose to organs of exact age-scaled and nearest age-matched phantoms were significantly different (p < 0.05).Results.In the feasibility study, the best DSCs were obtained for the brain (median: 0.86) and whole-body (median: 0.91) while kidneys (median: 0.58) and pancreas (median: 0.32) showed poorer agreement. In the case of MDA and ED, whole-body, brain, and kidneys showed tighter distribution and lower median values as compared to other organs. For height comparison, the overall agreement was within 2.8% (3.9 cm) and 3.0% (3.2 cm) of ground-truth UF/NCI and CDC reported 50th percentile heights, respectively. For mass comparison, the maximum percent and absolute differences between the scaled and ground-truth organ masses were within 31.3% (29.8 g) and 211.8 g (16.4%), respectively (across all ages). In the first dosimetric study, absolute difference up to 6% and 1.3 Gy was found for V15and mean dose, respectively. In the second dosimetric study, V15and mean dose were significantly different (p < 0.05) for all studied organs except the fully in-beam organs. D1and D95were not significantly different for most organs (p > 0.05).Conclusion.We have successfully evaluated our ASFs by scaling UF/NCI computational phantoms from one age to another age, which demonstrates the feasibility of scaling any CT-based anatomy. We have found that dose to organs of exact age-scaled and nearest aged-matched phantoms are significantly different (p < 0.05) which indicates that using the exact age-scaled phantoms for retrospective dosimetric studies is a better approach.
Assuntos
Fótons , Radiometria , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Imagens de Fantasmas , Radiometria/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios XRESUMO
In the event of a fission-based weapon or improvised nuclear device (IND) detonation, dose coefficients can be harnessed to provide dose assessments for defense, emergency preparedness, and consequence management, as well as to prospectively inform the assessment of radiation biomarkers and development of medical prophylaxis countermeasures for defense and homeland security stakeholders and decision-makers. Although dose coefficients have previously been calculated for this group, they would apply specifically to the studied population, the 1945 Japanese cohort, after which their anthropomorphic computational phantoms were modeled. For this reason, applications to other populations may be limited, and instead, an assessment of a more standardized population is desired. We employed a series of computational human phantoms representing international reference individuals: UF/NCI voxel phantom series containing newborn, 1-, 5-, 10-, 15-, and 35-year-old males and females. Irradiation of the phantoms was simulated using the Monte Carlo N-Particle transport code to determine organ dose coefficients under four idealized irradiation geometries at three distances from the detonation hypocenter at Hiroshima and Nagasaki using DS02 free-in-air prompt neutron and photon fluence spectra. Through these simulations, age-specific dose coefficients were determined for individual organs. Various articulated PIMAL stylized phantoms were simulated as well to estimate the effect of body posture on dose coefficients and determine the effect of posture on dosimetric estimation and reconstruction. Results additionally demonstrate that 137Cs and the Watt fission spectra are not ideal general surrogate sources for fission weapons, which may be considered for experimental testing of medical countermeasures. Supplementary data provided tabulates the compilation of organ dose-rate coefficients in this study.
Assuntos
Simulação por Computador , Fissão Nuclear , Armas Nucleares , Radiometria/métodos , Adolescente , Adulto , Sobreviventes de Bombas Atômicas , Radioisótopos de Césio , Pré-Escolar , Relação Dose-Resposta à Radiação , Feminino , Humanos , Recém-Nascido , Japão , Masculino , Método de Monte Carlo , Especificidade de Órgãos , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Radioisótopos/farmacocinéticaRESUMO
There is limited evidence that non-leukaemic lymphoid malignancies are radiogenic. As radiation-related cancer risks are generally higher after childhood exposure, we analysed pooled lymphoid neoplasm data in nine cohorts first exposed to external radiation aged <21 years using active bone marrow (ABM) and, where available, lymphoid system doses, and harmonised outcome classification. Relative and absolute risk models were fitted. Years of entry spanned 1916-1981. At the end of follow-up (mean 42.1 years) there were 593 lymphoma (422 non-Hodgkin (NHL), 107 Hodgkin (HL), 64 uncertain subtype), 66 chronic lymphocytic leukaemia (CLL) and 122 multiple myeloma (MM) deaths and incident cases among 143,136 persons, with mean ABM dose 0.14 Gy (range 0-5.95 Gy) and mean age at first exposure 6.93 years. Excess relative risk (ERR) was not significantly increased for lymphoma (ERR/Gy = -0.001; 95% CI: -0.255, 0.279), HL (ERR/Gy = -0.113; 95% CI: -0.669, 0.709), NHL + CLL (ERR/Gy = 0.099; 95% CI: -0.149, 0.433), NHL (ERR/Gy = 0.068; 95% CI: -0.253, 0.421), CLL (ERR/Gy = 0.320; 95% CI: -0.678, 1.712), or MM (ERR/Gy = 0.149; 95% CI: -0.513, 1.063) (all p-trend > 0.4). In six cohorts with estimates of lymphatic tissue dose, borderline significant increased risks (p-trend = 0.02-0.07) were observed for NHL + CLL, NHL, and CLL. Further pooled epidemiological studies are needed with longer follow-up, central outcome review by expert hematopathologists, and assessment of radiation doses to lymphoid tissues.
Assuntos
Linfoma/patologia , Mieloma Múltiplo/patologia , Neoplasias Induzidas por Radiação/patologia , Radiação Ionizante , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Linfoma/classificação , Linfoma/etiologia , Masculino , Mieloma Múltiplo/etiologia , Neoplasias Induzidas por Radiação/etiologia , Prognóstico , Adulto JovemRESUMO
Human microsomal cytochrome P450 2A6 (CYP2A6) contributes extensively to nicotine detoxication but also activates tobacco-specific procarcinogens to mutagenic products. The CYP2A6 structure shows a compact, hydrophobic active site with one hydrogen bond donor, Asn297, that orients coumarin for regioselective oxidation. The inhibitor methoxsalen effectively fills the active site cavity without substantially perturbing the structure. The structure should aid the design of inhibitors to reduce smoking and tobacco-related cancers.