Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 115(6): 682-90, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27529512

RESUMO

BACKGROUND: The phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway is commonly deregulated in human cancer, hence many PI3K and mTOR inhibitors have been developed and have now reached clinical trials. Similarly, CDKs have been investigated as cancer drug targets. METHODS: We have synthesised and characterised a series of 6-aminopyrimidines identified from a kinase screen that inhibit PI3K and/or mTOR and/or CDK2. Kinase inhibition, tumour cell growth, cell cycle distribution, cytotoxicity and signalling experiments were undertaken in HCT116 and HT29 colorectal cancer cell lines, and in vivo HT29 efficacy studies. RESULTS: 2,6-Diaminopyrimidines with an O(4)-cyclohexylmethyl substituent and a C-5-nitroso or cyano group (1,2,5) induced cell cycle phase alterations and were growth inhibitory (GI50<20 µM). Compound 1, but not 2 or 5, potently inhibits CDK2 (IC50=0.1 nM) as well as PI3K, and was cytotoxic at growth inhibitory concentrations. Consistent with kinase inhibition data, compound 1 reduced phospho-Rb and phospho-rS6 at GI50 concentrations. Combination of NU6102 (CDK2 inhibitor) and pictilisib (GDC-0941; pan-PI3K inhibitor) resulted in synergistic growth inhibition, and enhanced cytotoxicity in HT29 cells in vitro and HT29 tumour growth inhibition in vivo. CONCLUSIONS: These studies identified a novel series of mixed CDK2/PI3K inhibitors and demonstrate that dual targeting of CDK2 and PI3K can result in enhanced antitumour activity.


Assuntos
Adenocarcinoma/patologia , Neoplasias Colorretais/patologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Adenocarcinoma/enzimologia , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Quinase 2 Dependente de Ciclina/fisiologia , Humanos , Camundongos , Camundongos Nus , Proteínas de Neoplasias/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Malar J ; 15(1): 535, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27821169

RESUMO

BACKGROUND: Examining essential biochemical pathways in Plasmodium falciparum presents serious challenges, as standard molecular techniques such as siRNA cannot be employed in this organism, and generating gene knock-outs of essential proteins requires specialized conditional approaches. In the study of protein kinases, pharmacological inhibition presents a feasible alternative option. However, as in mammalian systems, inhibitors often lack the desired selectivity. Described here is a chemical genetic approach to selectively inhibit Pfnek-2 in P. falciparum, a member of the NIMA-related kinase family that is essential for completion of the sexual development of the parasite. RESULTS: Introduction of a valine to cysteine mutation at position 24 in the glycine rich loop of Pfnek-2 does not affect kinase activity but confers sensitivity to the protein kinase inhibitor 4-(6-ethynyl-9H-purin-2-ylamino) benzene sulfonamide (NCL-00016066). Using a combination of in vitro kinase assays and mass spectrometry, (including phosphoproteomics) the study shows that this compound acts as an irreversible inhibitor to the mutant Pfnek2 likely through a covalent link with the introduced cysteine residue. In particular, this was shown by analysis of total protein mass using mass spectrometry which showed a shift in molecular weight of the mutant kinase in the presence of the inhibitor to be precisely equivalent to the molecular weight of NCL-00016066. A similar molecular weight shift was not observed in the wild type kinase. Importantly, this inhibitor has little activity towards the wild type Pfnek-2 and, therefore, has all the properties of an effective chemical genetic tool that could be employed to determine the cellular targets for Pfnek-2. CONCLUSIONS: Allelic replacement of wild-type Pfnek-2 with the mutated kinase will allow for targeted inhibition of Pfnek-2 with NCL-00016066 and hence pave the way for comparative studies aimed at understanding the biological role and transmission-blocking potential of Pfnek-2.


Assuntos
Inibidores Enzimáticos/metabolismo , Proteínas Mutantes/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Plasmodium falciparum/enzimologia , Purinas/metabolismo , Sulfonamidas/metabolismo , Espectrometria de Massas , Proteínas Mutantes/genética , Quinases Relacionadas a NIMA/genética
3.
Org Biomol Chem ; 13(18): 5279-84, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25858034

RESUMO

Regioselective sulfamoylation of primary hydroxyl groups enabled a 5-step synthesis (overall yield 17%) of the first reported small molecule inhibitor of sulfatase-1 and 2, ((2S,3R,4R,5S,6R)-4,5-dihydroxy-2-methoxy-6-((sulfamoyloxy)methyl)tetrahydro-2H-pyran-3-yl)sulfamic acid, which obviated the use of hydroxyl protecting groups and is a marked improvement on the reported 9-step synthesis (overall yield 9%) employing hazardous trifluoromethylsulfonyl azide. The sulfamoylation methodology was used to prepare a range of derivatives of 1, and inhibition data was generated for Sulf-2, ARSA and ARSB.


Assuntos
Temperatura Baixa , Inibidores Enzimáticos/síntese química , Sulfatases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Estereoisomerismo
4.
Chemistry ; 20(8): 2311-7, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24458729

RESUMO

Small-molecule drug discovery requires reliable synthetic methods for attaching amino compounds to heterocyclic scaffolds. Trifluoroacetic acid-2,2,2-trifluoroethanol (TFA-TFE) is as an effective combination for achieving SN Ar reactions between anilines and heterocycles (e.g., purines and pyrimidines) substituted with a leaving group (fluoro-, chloro-, bromo- or alkylsulfonyl). This method provides a variety of compounds containing a "kinase-privileged fragment" associated with potent inhibition of kinases. TFE is an advantageous solvent because of its low nucleophilicity, ease of removal and ability to solubilise polar substrates. Furthermore, TFE may assist the breakdown of the Meisenheimer-Jackson intermediate by solvating the leaving group. TFA is a necessary and effective acidic catalyst, which activates the heterocycle by N-protonation without deactivating the aniline by conversion into an anilinium species. The TFA-TFE methodology is compatible with a variety of functional groups and complements organometallic alternatives, which are often disadvantageous because of the expense of reagents, the frequent need to explore diverse sets of reaction conditions, and problems with product purification. In contrast, product isolation from TFA-TFE reactions is straightforward: evaporation of the reaction mixture, basification and chromatography affords analytically pure material. A total of 45 examples are described with seven discrete heterocyclic scaffolds and 2-, 3- and 4-substituted anilines giving product yields that are normally in the range 50-90 %. Reactions can be performed with either conventional heating or microwave irradiation, with the latter often giving improved yields.


Assuntos
Aminas/química , Compostos de Anilina/química , Compostos Heterocíclicos/química , Purinas/química , Pirimidinas/química , Ácido Trifluoracético/química , Trifluoretanol/química , Catálise , Micro-Ondas , Estrutura Molecular
5.
Org Biomol Chem ; 12(1): 141-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24213855

RESUMO

Recent studies have shown that irreversible inhibition of Nek2 kinase [(Never in mitosis gene a)-related kinase 2], overexpression of which is observed in several cancers, can be achieved using Michael acceptors containing an ethynyl group, which target the enzyme's cysteine 22 residue lying near the catalytic site. The model studies described herein demonstrate an analogous capture of the ethynyl moiety in a series of ethynyl-heterocycles (e.g. 6-ethynyl-N-phenyl-9H-purin-2-amine) by N-acetylcysteine methyl ester in the presence of 1,4-diazabicyclo[2.2.2]octane in either dimethyl sulfoxide or N,N-dimethylformamide. Kinetic studies showed a 50-fold range in reactivity with 7-ethynyl-N-phenyl-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine being the most reactive compound, whereas 4-ethynyl-N-phenyl-7H-pyrrolo[2,3-d]pyrimidin-2-amine was the least reactive. Studies of the isomeric compounds, 2-(3-((6-ethynyl-7-methyl-7H-purin-2-yl)amino)phenyl)acetamide and 2-(3-((6-ethynyl-9-methyl-9H-purin-2-yl)amino)phenyl)acetamide, revealed the N(7)-methyl isomer to be 5-fold more reactive than the 9-methyl isomer, which is ascribed to a buttressing effect in the N(7)-methyl compound. Comparison of the crystal structures of these isomers showed that the ethynyl group is significantly displaced away from the methyl group exclusively in the N(7)-methyl isomer with an sp(2) bond angle of 124°, whereas the corresponding angle in the N(9)-methyl isomer was the expected 120°. The results of this study indicate heterocyclic scaffolds that are likely to be more promising for inhibition of Nek2 and other kinases containing a reactive cysteine.


Assuntos
Compostos Heterocíclicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Purinas/farmacologia , Compostos de Sulfidrila/química , Cristalografia por Raios X , Compostos Heterocíclicos/química , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Quinases Relacionadas a NIMA , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Purinas/química
6.
Org Biomol Chem ; 11(11): 1874-8, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23381666

RESUMO

Purines protected at N-9 by p-methoxybenzyl are methylated or ethylated in 2,2,2-trifluoroethanol at N-7 by trimethyl- or triethyl-oxonium borofluorate, respectively. Subjecting the resulting cationic species to microwave irradiation releases an N(7)-methyl- or ethyl-purine. This one-pot procedure is an efficient regiospecific method applicable to diverse substrates.


Assuntos
Purinas/química , Trifluoretanol/química , Cristalografia por Raios X , Metilação , Micro-Ondas , Modelos Moleculares , Estrutura Molecular , Purinas/síntese química , Solventes/química
7.
Int J Cancer ; 131(4): E337-47, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21913183

RESUMO

2-Deoxy-D-glucose (2DG) is a synthetic glucose analogue that inhibits glycolysis and blocks cancer cell growth. In this report, we evaluated the role of 2DG in the induction of cell death in human metastatic melanoma cells. We have also examined the effects of 2DG in combined treatments with four different pro-apoptotic agents: (i) Temozolomide (TMZ), a chemotherapic drug commonly used to treat metastatic melanoma, (ii) Pyrimethamine (Pyr), a pro-apoptotic antifolate drug recently reappraised in cancer therapy, (iii) Cisplatin (CisPt), a drug capable of directly binding to DNA ultimately triggering apoptosis of cancer cells and (iv) the kinase inhibitor Staurosporine (STS), a prototypical inducer of mitochondria-mediated apoptosis. We found that 2DG per se: (i) induced a cell cycle arrest in G(0) /G(1) , (ii) promoted autophagy, (iii) was ineffective in inducing apoptosis in association with the chemotherapic drug TMZ, whereas (iv) it was synergistic with CisPt and STS pro-apoptotic drugs through a mechanism involving changes of mitochondrial homeostasis. Conversely, (v) 2DG hindered the pro-apoptotic effects of Pyr via a mechanism involving either the block of cell cycle in G(0) /G(1) or the modification of the free radical production of the cell, i.e., decreasing the production of reactive oxygen species (ROS) and increasing the production of reactive nitrogen species (RNS). Moreover, a clear-cut autophagic response involving endoplasmic reticulum remodelling was detectable. Since autophagic cytoprotection has been suggested to contribute to the induction of chemoresistance, these results could provide useful clues as concerns the use of 2DG as anticancer agent in combinatory protocols.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Desoxiglucose/farmacologia , Glicólise/efeitos dos fármacos , Melanoma/patologia , Metástase Neoplásica , Trifosfato de Adenosina/biossíntese , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Ciclo Celular , Linhagem Celular Tumoral , Humanos , Melanoma/imunologia , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Bioorg Med Chem Lett ; 22(17): 5352-9, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22835870
9.
Org Biomol Chem ; 10(37): 7610-7, 2012 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22893112

RESUMO

Sulfamates are important functional groups in certain areas of current medicinal chemistry and drug development. Alcohols and phenols are generally converted into the corresponding primary sulfamates (ROSO(2)NH(2) and ArOSO(2)NH(2), respectively) by reaction with sulfamoyl chloride (H(2)NSO(2)Cl). The lability of the O-sulfamate group, especially to basic conditions, usually restricts this method to a later stage of a synthesis. To enable a more flexible approach to the synthesis of phenolic O-sulfamates, a protecting group strategy for sulfamates has been developed. Both sulfamate NH protons were replaced with either 4-methoxybenzyl or 2,4-dimethoxybenzyl. These N-protected sulfamates were stable to oxidising and reducing agents, as well as bases and nucleophiles, thus rendering such masked sulfamates suitable for multi-step synthesis. The protected sulfamates were synthesised by microwave heating of 1,1'-sulfonylbis(2-methyl-1H-imidazole) with a substituted phenol to give an aryl 2-methyl-1H-imidazole-1-sulfonate. This imidazole-sulfonate was N-methylated by reaction with trimethyloxonium tetrafluoroborate, which enabled subsequent displacement of 1,2-dimethylimidazole by a dibenzylamine (e.g. bis-2,4-dimethoxybenzylamine). The resulting N-diprotected, ring-substituted phenol O-sulfamates were further manipulated through reactions at the aryl substituent and finally deprotected with trifluoroacetic acid to afford a phenol O-sulfamate. The use of 2,4-dimethoxybenzyl was particularly attractive because deprotection occurred quantitatively within 2 h at room temperature with 10% trifluoroacetic acid in dichloromethane. The four key steps in the protocol described [reaction of 1,1'-sulfonylbis(2-methyl-1H-imidazole) with a phenol, methylation, displacement with a dibenzylamine and deprotection] all proceeded in very high yields.


Assuntos
Compostos de Benzil/química , Ácidos Sulfônicos/síntese química , Estrutura Molecular , Ácidos Sulfônicos/química
10.
Org Biomol Chem ; 10(33): 6747-57, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22814419

RESUMO

Substitution at the 7-position of the chromen-4-one pharmacophore of 8-(dibenzo[b,d]thiophen-4-yl)-2-morpholino-4H-chromen-4-one NU7441, a potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor, with allyl, n-propyl or methyl enabled the resolution by chiral HPLC of atropisomers. Biological evaluation against DNA-PK of each pair of atropisomers showed a marked difference in potency, with biological activity residing exclusively in the laevorotatory enantiomer.


Assuntos
Cromonas/química , Cromonas/farmacologia , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Morfolinas/química , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Sítios de Ligação , Cromonas/síntese química , Proteína Quinase Ativada por DNA/química , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Modelos Moleculares , Morfolinas/síntese química , Inibidores de Proteínas Quinases/síntese química , Estereoisomerismo , Relação Estrutura-Atividade , Suínos
11.
J Med Chem ; 65(9): 6513-6540, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35468293

RESUMO

The nonclassical extracellular signal-related kinase 5 (ERK5) mitogen-activated protein kinase pathway has been implicated in increased cellular proliferation, migration, survival, and angiogenesis; hence, ERK5 inhibition may be an attractive approach for cancer treatment. However, the development of selective ERK5 inhibitors has been challenging. Previously, we described the development of a pyrrole carboxamide high-throughput screening hit into a selective, submicromolar inhibitor of ERK5 kinase activity. Improvement in the ERK5 potency was necessary for the identification of a tool ERK5 inhibitor for target validation studies. Herein, we describe the optimization of this series to identify nanomolar pyrrole carboxamide inhibitors of ERK5 incorporating a basic center, which suffered from poor oral bioavailability. Parallel optimization of potency and in vitro pharmacokinetic parameters led to the identification of a nonbasic pyrazole analogue with an optimal balance of ERK5 inhibition and oral exposure.


Assuntos
Proteína Quinase 7 Ativada por Mitógeno , Pirróis , Proliferação de Células , Pirróis/farmacologia
12.
Bioorg Med Chem Lett ; 21(3): 966-70, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21216595

RESUMO

Introduction of an O-alkoxyphenyl substituent at the 8-position of the 2-morpholino-4H-chromen-4-one pharmacophore enabled regions of the ATP-binding site of DNA-dependent protein kinase (DNA-PK) to be probed further. Structure-activity relationships have been elucidated for inhibition of DNA-PK and PI3K (p110α), with N-(2-(cyclopropylmethoxy)-4-(2-morpholino-4-oxo-4H-chromen-8-yl)phenyl)-2-morpholinoacetamide 11a being identified as a potent and selective DNA-PK inhibitor (IC(50)=8 nM).


Assuntos
Cromonas/química , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Trifosfato de Adenosina/química , Cromonas/síntese química , Cromonas/farmacologia , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
13.
Bioorg Med Chem Lett ; 21(19): 5916-9, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21875801

RESUMO

Structure-activity relationships for the MDM2-p53 inhibitory activity of a series of A-ring substituted 2-N-benzyl-3-(4-chlorophenyl)-3-(1-(hydroxymethyl)cyclopropyl)methoxy)isoindolinones have been investigated, giving rise to compounds with improved potency over their unsubstituted counterparts. Isoindolinone A-ring substitution with a 4-chloro group for the 4-nitrobenzyl, 4-bromobenzyl and 4-cyanobenzyl derivatives (10a-c) and substitution with a 6-tert-butyl group for the 4-nitrobenzyl derivative (10j) were found to confer additional potency. Resolution of the enantiomers of 10a showed that potent MDM2-p53 activity resided in the (-)-enantiomer ((-)-10a; IC(50)=44 ± 6 nM). The cellular activity of key compounds has been examined in cell lines with defined p53 and MDM2 status. Compounds 10a and (-)-10a increase p53 protein levels, activate p53-dependent MDM2 and p21 transcription in MDM2 amplified cells, and show improved selectivity for growth inhibition in wild type p53 cell lines over the parent compound.


Assuntos
Antineoplásicos/síntese química , Desenho de Fármacos , Isoindóis/síntese química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Concentração Inibidora 50 , Isoindóis/química , Isoindóis/metabolismo , Isoindóis/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
14.
Org Biomol Chem ; 9(17): 6066-74, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21748189

RESUMO

Amino-substituted biphenyls were obtained by Suzuki cross-coupling of 2,6-dibromoaniline with a phenylboronic acid (substituted with Me, NO(2), OH, OMe or Cl) preferably assisted by microwave irradiation. Conversion of the amino group into a thiol preceded a base-induced intramolecular substitution, also facilitated by microwave heating, to generate the second C-S bond of the target dibenzothiophene. The 1-, 2-, 3- or 4-substituted 6-halodibenzothiophenes obtained were subjected to a palladium-mediated coupling with 2-morpholin-4-yl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4H-chromen-4-one to give the respective 6-, 7-, 8- or 9-substituted dibenzothiophen-4-ylchromenones. These compounds were evaluated as inhibitors of DNA-dependent protein kinase (DNA-PK) and compared to the parent 8-(dibenzo[b,d]thiophen-4-yl)-2-morpholin-4-yl-4H-chromen-4-one. Notably, derivatives bearing hydroxy or methoxy substituents at C-8 or C-9 retained activity, whereas substitution at C-7 lowered activity. Substitution with chloro at C-6 was not detrimental to activity, but a chloro group at C-7 or C-8 reduced potency. The data indicate permissive elaboration of hydroxyl at C-8 or C-9, enabling the possibility of improved pharmaceutical properties, whilst retaining potency against DNA-PK.


Assuntos
Proteína Quinase Ativada por DNA/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Tiofenos/síntese química , Tiofenos/farmacologia , Ciclização , Proteína Quinase Ativada por DNA/metabolismo , Inibidores Enzimáticos/química , Humanos , Micro-Ondas , Tiofenos/química
15.
J Med Chem ; 64(7): 4071-4088, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33761253

RESUMO

Inhibition of murine double minute 2 (MDM2)-p53 protein-protein interaction with small molecules has been shown to reactivate p53 and inhibit tumor growth. Here, we describe rational, structure-guided, design of novel isoindolinone-based MDM2 inhibitors. MDM2 X-ray crystallography, quantum mechanics ligand-based design, and metabolite identification all contributed toward the discovery of potent in vitro and in vivo inhibitors of the MDM2-p53 interaction with representative compounds inducing cytostasis in an SJSA-1 osteosarcoma xenograft model following once-daily oral administration.


Assuntos
Antineoplásicos/farmacologia , Isoindóis/farmacologia , Osteossarcoma/tratamento farmacológico , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Estabilidade de Medicamentos , Feminino , Humanos , Isoindóis/síntese química , Isoindóis/metabolismo , Macaca fascicularis , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Bioorg Med Chem Lett ; 20(12): 3649-53, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20472428

RESUMO

Replacement of the core heterocycle of a defined series of chromen-4-one DNA-PK inhibitors by the isomeric chromen-2-one (coumarin) and isochromen-1-one (isocoumarin) scaffolds was investigated. Structure-activity relationships for DNA-PK inhibition were broadly consistent, albeit with a reduction of potency compared with the parent chromenone.


Assuntos
Trifosfato de Adenosina/metabolismo , Cumarínicos/antagonistas & inibidores , Proteína Quinase Ativada por DNA/química , Isocumarinas/antagonistas & inibidores , Antineoplásicos , Sítios de Ligação , Cromonas , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Concentração Inibidora 50 , Relação Estrutura-Atividade
17.
Org Biomol Chem ; 8(10): 2457-64, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20448906

RESUMO

The attenuated S(N)2 reactivity of the 2,2,2-trifluoroethyl group has been exploited for the synthesis of a series of 6-cyclohexylmethoxy-2-arylaminopurines in which a sulfonamide moiety was attached to the aryl ring via a methylene group. These were required as potential inhibitors of serine-threonine kinases of interest for the treatment of cancer. 3-Nitrophenylmethanesulfonyl chloride was converted into the corresponding 2,2,2-trifluoroethoxysulfonyl ester by reaction with 2,2,2-trifluoroethanol in the presence of triethylamine/4-dimethylaminopyridine. Catalytic hydrogenation of the nitro group employing 2,2,2-trifluoroethanol as solvent gave 2,2,2-trifluoroethyl 3-aminophenylmethanesulfonate, which was reacted with 6-cyclohexylmethoxy-2-fluoropurine in 2,2,2-trifluoroethanol/trifluoroacetic acid to afford 2,2,2-trifluoroethyl 3-(6-cyclohexylmethoxy-9H-purin-2-ylamino)phenylmethanesulfonate. 3-(6-Cyclohexylmethoxy-9H-purin-2-ylamino)phenylmethanesulfonamides were synthesised by microwave heating of the trifluoroethoxysulfonate with an amine and 1,8-diazabicycloundec-7-ene in tetrahydrofuran. The mechanism of this process was shown to involve an intermediate sulfene by a deuterium-labelling experiment. 3-(6-Cyclohexylmethoxy-9H-purin-2-ylamino)phenylmethanesulfonamide derivatives were assayed as inhibitors of human cyclin-dependent kinase 2. Previous structure-activity studies demonstrated that relocating the sulfonamide group of O(6)-cyclohexylmethoxy-2-(4'-sulfamoylanilino)purine from the 4- to the 3-position on the 2-arylamino ring resulted in a 40-fold reduction in potency against CDK2. In the present study, no further loss of activity was observed on introducing a methylene group between the sulfonamide and the aryl ring, 3-(6-cyclohexylmethoxy-9H-purin-2-ylamino)phenylmethanesulfonamide proving equipotent with O(6)-cyclohexylmethoxy-2-(3'-sulfamoylanilino)purine (IC(50) = 0.21 microM). N-Alkylation of the sulfonamide reduced CDK-2 inhibitory activity, while a substituted benzyl or 3-phenylpropyl group on the sulfonamide resulted in a loss of potency compared with 3-(6-cyclohexylmethoxy-9H-purin-2-ylamino)phenylmethanesulfonamide. The dimethylaminopropyl derivative, 1-[3-(6-cyclohexylmethoxy-9H-purin-2-ylamino)phenyl]-N-(3-dimethylaminopropyl)methanesulfonamide was only 2-fold less potent than 3-(6-cyclohexylmethoxy-9H-purin-2-ylamino)phenylmethanesulfonamide, suggesting an interaction between the basic dimethylamino group and the kinase. The presence of alicyclic groups on the pendant sulfonamide showed IC(50) values in the 0.5-1.5 microM range. N-(4-tert-Butylphenyl)-1-[3-(6-cyclohexylmethoxy-9H-purin-2-ylamino)phenyl]methanesulfonamide was markedly less active (IC(50) = 34 microM), suggesting a steric effect within the ATP-binding domain.


Assuntos
Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Ácidos Sulfônicos/química , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Humanos , Inibidores de Proteínas Quinases/química , Purinas/química , Sulfonamidas/química
18.
Org Biomol Chem ; 8(8): 1922-8, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20449499

RESUMO

Substitution at the 3-position of the dibenzothiophen-4-yl ring of 8-(dibenzo[b,d]thiophen-4-yl)-2-morpholino-4H-chromen-4-one NU7441, a potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor, with propyl, allyl or methyl enabled the separation by chiral HPLC of atropisomers. This is a consequence of restricted rotation about the dibenzothiophene-chromenone bond. Biological evaluation against DNA-PK of the pairs of atropisomers showed a marked difference in potency, with only one enantiomer being biologically active.


Assuntos
Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Cromatografia Líquida de Alta Pressão , Isomerismo , Inibidores de Proteínas Quinases/síntese química , Tiofenos/síntese química
19.
Org Biomol Chem ; 8(10): 2397-407, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20448898

RESUMO

CDK2 inhibitory structure-activity relationships have been explored for a range of 5-substituted O(4)-alkylpyrimidines. Variation of the 5-substituent in the 2,6-diaminopyrimidine series confirmed the 5-nitroso substituent as optimal, and showed that 5-formyl and 5-acetyl substituents were also tolerated at this position. A series of O(4)-alkyl-N(2)-aryl-5-substituted-6-aminopyrimidines revealed interesting structure-activity relationships. In the 5-nitroso series, the optimum O(4)-alkyl substituents were cyclohexylmethyl or sec-butyl, combined with a 2-sulfanilyl group. By contrast, in the N(2)-arylsulfonamido-5-formyl series, the cyclohexylmethyl compound showed relatively poor activity compared with the sec-butyl derivative (22j, (R)-4-(4-amino-6-sec-butoxy-5-formylpyrimidin-2-ylamino)benzenesulfonamide; CDK2 IC(50) = 0.8 nM). Similarly, in the N(2)-arylsulfonamido-5-(hydroxyiminomethyl) series the O(4)-sec-butyl substituent conferred greater potency than the cyclohexylmethyl (23c, (rac)-4-(4-amino-6-sec-butoxy-5-(hydroxyiminomethyl)pyrimidin-2-ylamino)benzenesulfonamide; CDK2 IC(50) = 7.4 nM). The 5-formyl derivatives show selectivity for CDK2 over other CDK family members, and are growth inhibitory in tumour cells (e.g. 22j, GI(50) = 0.57 microM).


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Oxigênio/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Linhagem Celular Tumoral , Descoberta de Drogas , Humanos , Concentração Inibidora 50 , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Relação Estrutura-Atividade
20.
RSC Med Chem ; 11(6): 707-731, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479670

RESUMO

Renewed interest in covalent inhibitors of enzymes implicated in disease states has afforded several agents targeted at protein kinases of relevance to cancers. We now report the design, synthesis and biological evaluation of 6-ethynylpurines that act as covalent inhibitors of Nek2 by capturing a cysteine residue (Cys22) close to the catalytic domain of this protein kinase. Examination of the crystal structure of the non-covalent inhibitor 3-((6-cyclohexylmethoxy-7H-purin-2-yl)amino)benzamide in complex with Nek2 indicated that replacing the alkoxy with an ethynyl group places the terminus of the alkyne close to Cys22 and in a position compatible with the stereoelectronic requirements of a Michael addition. A series of 6-ethynylpurines was prepared and a structure activity relationship (SAR) established for inhibition of Nek2. 6-Ethynyl-N-phenyl-7H-purin-2-amine [IC50 0.15 µM (Nek2)] and 4-((6-ethynyl-7H-purin-2-yl)amino)benzenesulfonamide (IC50 0.14 µM) were selected for determination of the mode of inhibition of Nek2, which was shown to be time-dependent, not reversed by addition of ATP and negated by site directed mutagenesis of Cys22 to alanine. Replacement of the ethynyl group by ethyl or cyano abrogated activity. Variation of substituents on the N-phenyl moiety for 6-ethynylpurines gave further SAR data for Nek2 inhibition. The data showed little correlation of activity with the nature of the substituent, indicating that after sufficient initial competitive binding to Nek2 subsequent covalent modification of Cys22 occurs in all cases. A typical activity profile was that for 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide [IC50 0.06 µM (Nek2); GI50 (SKBR3) 2.2 µM] which exhibited >5-10-fold selectivity for Nek2 over other kinases; it also showed > 50% growth inhibition at 10 µM concentration against selected breast and leukaemia cell lines. X-ray crystallographic analysis confirmed that binding of the compound to the Nek2 ATP-binding site resulted in covalent modification of Cys22. Further studies confirmed that 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide has the attributes of a drug-like compound with good aqueous solubility, no inhibition of hERG at 25 µM and a good stability profile in human liver microsomes. It is concluded that 6-ethynylpurines are promising agents for cancer treatment by virtue of their selective inhibition of Nek2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA