Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 17(5): e3000258, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31136566

RESUMO

AccessLabs are workshops with two simultaneous motivations, achieved through direct citizen-scientist pairings: (1) to decentralise research skills so that a broader range of people are able to access/use scientific research, and (2) to expose science researchers to the difficulties of using their research as an outsider, creating new open access advocates. Five trial AccessLabs have taken place for policy makers, media/journalists, marine sector participants, community groups, and artists. The act of pairing science academics with local community members helps build understanding and trust between groups at a time when this relationship appears to be under increasing threat from different political and economic currents in society. Here, we outline the workshop motivations, format, and evaluation, with the aim that others can build on the methods developed.


Assuntos
Congressos como Assunto , Pesquisa , Ciência , Pesquisadores
2.
PLoS Biol ; 15(11): e2004044, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29190283

RESUMO

The Sonic Kayak is a musical instrument used to investigate nature and developed during open hacklab events. The kayaks are rigged with underwater environmental sensors, which allow paddlers to hear real-time water temperature sonifications and underwater sounds, generating live music from the marine world. Sensor data is also logged every second with location, time and date, which allows for fine-scale mapping of water temperatures and underwater noise that was previously unattainable using standard research equipment. The system can be used as a citizen science data collection device, research equipment for professional scientists, or a sound art installation in its own right.


Assuntos
Acústica , Monitoramento Ambiental , Música , Navios , Software , Temperatura
3.
Mol Ecol ; 27(6): 1413-1427, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29420865

RESUMO

Ranaviruses are responsible for a lethal, emerging infectious disease in amphibians and threaten their populations throughout the world. Despite this, little is known about how amphibian populations respond to ranaviral infection. In the United Kingdom, ranaviruses impact the common frog (Rana temporaria). Extensive public engagement in the study of ranaviruses in the UK has led to the formation of a unique system of field sites containing frog populations of known ranaviral disease history. Within this unique natural field system, we used RNA sequencing (RNA-Seq) to compare the gene expression profiles of R. temporaria populations with a history of ranaviral disease and those without. We have applied a RNA read-filtering protocol that incorporates Bloom filters, previously used in clinical settings, to limit the potential for contamination that comes with the use of RNA-Seq in nonlaboratory systems. We have identified a suite of 407 transcripts that are differentially expressed between populations of different ranaviral disease history. This suite contains genes with functions related to immunity, development, protein transport and olfactory reception among others. A large proportion of potential noncoding RNA transcripts present in our differentially expressed set provide first evidence of a possible role for long noncoding RNA (lncRNA) in amphibian response to viruses. Our read-filtering approach also removed significantly more bacterial reads from libraries generated from positive disease history populations. Subsequent analysis revealed these bacterial read sets to represent distinct communities of bacterial species, which is suggestive of an interaction between ranavirus and the host microbiome in the wild.


Assuntos
Animais Selvagens/genética , Infecções por Vírus de DNA/genética , Rana temporaria/virologia , Ranavirus/patogenicidade , Animais , Animais Selvagens/microbiologia , Infecções por Vírus de DNA/virologia , Microbiota/genética , Rana temporaria/genética , Análise de Sequência de RNA , Reino Unido
4.
Front Microbiol ; 10: 1245, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281291

RESUMO

There is growing appreciation of the important role of commensal microbes in ensuring the normal function and health of their hosts, including determining how hosts respond to pathogens. A range of infectious diseases are threatening amphibians worldwide, and evidence is accumulating that the host-associated bacteria that comprise the microbiome may be key in mediating interactions between amphibian hosts and infectious pathogens. We used 16S rRNA amplicon sequencing to quantify the skin microbial community structure of over 200 individual wild adult European common frogs (Rana temporaria), from ten populations with contrasting history of the lethal disease ranavirosis, caused by emerging viral pathogens belonging to the genus Ranavirus. All populations had similar species richness irrespective of disease history, but populations that have experienced historical outbreaks of ranavirosis have a distinct skin microbiome structure (beta diversity) when compared to sites where no outbreaks of the disease have occurred. At the individual level, neither age, body length, nor sex of the frog could predict the structure of the skin microbiota. Our data potentially support the hypothesis that variation among individuals in skin microbiome structure drive differences in susceptibility to infection and lethal outbreaks of disease. More generally, our results suggest that population-level processes are more important for driving differences in microbiome structure than variation among individuals within populations in key life history traits such as age and body size.

5.
PeerJ ; 6: e5949, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479902

RESUMO

Infectious diseases can alter the demography of their host populations, reducing their viability even in the absence of mass mortality. Amphibians are the most threatened group of vertebrates globally, and emerging infectious diseases play a large role in their continued population declines. Viruses belonging to the genus Ranavirus are responsible for one of the deadliest and most widespread of these diseases. To date, no work has used individual level data to investigate how ranaviruses affect population demographic structure. We used skeletochronology and morphology to evaluate the impact of ranaviruses on the age structure of populations of the European common frog (Rana temporaria) in the UK. We compared ecologically similar populations that differed most notably in their historical presence or absence of ranavirosis (the acute syndrome caused by ranavirus infection). Our results suggest that ranavirosis may truncate the age structure of R. temporaria populations. One potential explanation for such a shift might be increased adult mortality and subsequent shifts in the life history of younger age classes that increase reproductive output earlier in life. Additionally, we constructed population projection models which indicated that such increased adult mortality could heighten the vulnerability of frog populations to stochastic environmental challenges.

6.
PLoS One ; 13(1): e0190740, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29315317

RESUMO

Studying ecological and evolutionary processes in the natural world often requires research projects to follow multiple individuals in the wild over many years. These projects have provided significant advances but may also be hampered by needing to accurately and efficiently collect and store multiple streams of the data from multiple individuals concurrently. The increase in the availability and sophistication of portable computers (smartphones and tablets) and the applications that run on them has the potential to address many of these data collection and storage issues. In this paper we describe the challenges faced by one such long-term, individual-based research project: the Banded Mongoose Research Project in Uganda. We describe a system we have developed called Mongoose 2000 that utilises the potential of apps and portable computers to meet these challenges. We discuss the benefits and limitations of employing such a system in a long-term research project. The app and source code for the Mongoose 2000 system are freely available and we detail how it might be used to aid data collection and storage in other long-term individual-based projects.


Assuntos
Evolução Biológica , Ecossistema , Monitoramento Ambiental/métodos , Animais , Computadores , Coleta de Dados , Bases de Dados Factuais , Feminino , Herpestidae , Humanos , Masculino , Gravidez , Smartphone , Uganda
7.
PLoS One ; 10(6): e0127037, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039741

RESUMO

Ranaviruses are causing mass amphibian die-offs in North America, Europe and Asia, and have been implicated in the decline of common frog (Rana temporaria) populations in the UK. Despite this, we have very little understanding of the environmental drivers of disease occurrence and prevalence. Using a long term (1992-2000) dataset of public reports of amphibian mortalities, we assess a set of potential predictors of the occurrence and prevalence of Ranavirus-consistent common frog mortality events in Britain. We reveal the influence of biotic and abiotic drivers of this disease, with many of these abiotic characteristics being anthropogenic. Whilst controlling for the geographic distribution of mortality events, disease prevalence increases with increasing frog population density, presence of fish and wild newts, increasing pond depth and the use of garden chemicals. The presence of an alternative host reduces prevalence, potentially indicating a dilution effect. Ranavirosis occurrence is associated with the presence of toads, an urban setting and the use of fish care products, providing insight into the causes of emergence of disease. Links between occurrence, prevalence, pond characteristics and garden management practices provides useful management implications for reducing the impacts of Ranavirus in the wild.


Assuntos
Infecções por Vírus de DNA , Bases de Dados Factuais , Extinção Biológica , Rana temporaria/virologia , Ranavirus , Animais , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/veterinária , Reino Unido/epidemiologia
8.
PLoS One ; 10(11): e0139585, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26566271

RESUMO

Decapod crustaceans exhibit considerable variation in fertilisation strategies, ranging from pervasive single paternity to the near-ubiquitous presence of multiple paternity, and such knowledge of mating systems and behaviour are required for the informed management of commercially-exploited marine fisheries. We used genetic markers to assess the paternity of individual broods in the European lobster, Homarus gammarus, a species for which paternity structure is unknown. Using 13 multiplexed microsatellite loci, three of which are newly described in this study, we genotyped 10 eggs from each of 34 females collected from an Atlantic peninsula in the south-western United Kingdom. Single reconstructed paternal genotypes explained all observed progeny genotypes in each of the 34 egg clutches, and each clutch was fertilised by a different male. Simulations indicated that the probability of detecting multiple paternity was in excess of 95% if secondary sires account for at least a quarter of the brood, and in excess of 99% where additional sire success was approximately equal. Our results show that multiple paternal fertilisations are either absent, unusual, or highly skewed in favour of a single male among H. gammarus in this area. Potential mechanisms upholding single paternal fertilisation are discussed, along with the prospective utility of parentage assignments in evaluations of hatchery stocking and other fishery conservation approaches in light of this finding.


Assuntos
Nephropidae/genética , Animais , Feminino , Fertilização , Genótipo , Masculino , Repetições de Microssatélites , Nephropidae/fisiologia , Comportamento Sexual Animal , Zigoto/metabolismo
9.
PLoS One ; 10(6): e0130500, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26111016

RESUMO

Amphibians are experiencing global declines and extinctions, with infectious diseases representing a major factor. In this study we examined the transcriptional response of metamorphic hosts (common frog, Rana temporaria) to the two most important amphibian pathogens: Batrachochytrium dendrobatidis (Bd) and Ranavirus. We found strong up-regulation of a gene involved in the adaptive immune response (AP4S1) at four days post-exposure to both pathogens. We detected a significant transcriptional response to Bd, covering the immune response (innate and adaptive immunity, complement activation, and general inflammatory responses), but relatively little transcriptional response to Ranavirus. This may reflect the higher mortality rates found in wild common frogs infected with Ranavirus as opposed to Bd. These data provide a valuable genomic resource for the amphibians, contribute insight into gene expression changes after pathogen exposure, and suggest potential candidate genes for future host-pathogen research.


Assuntos
Quitridiomicetos/genética , Rana temporaria/genética , Ranavirus/genética , Transcriptoma/genética , Imunidade Adaptativa/genética , Animais , Quitridiomicetos/imunologia , Quitridiomicetos/patogenicidade , Regulação da Expressão Gênica , Genoma , Imunidade Inata/genética , Rana temporaria/virologia , Ranavirus/imunologia , Ranavirus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA