Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 37(2): 330-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18981167

RESUMO

In addition to its function as carnitine transporter, novel organic cation transporter type 2 (OCTN2; human gene symbol SLC22A5) is widely recognized as a transporter of drugs. This notion is based on several reports of direct measurement of drug accumulation. However, a rigorous, comparative, and comprehensive analysis of transport efficiency of OCTN2 has not been available so far. In the present study, OCTN2 orthologs from human, rat, and chicken were expressed in 293 cells using an inducible expression system. Uptake of trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide (ASP(+)), cephaloridine, ergothioneine, gabapentin, mildronate, pyrilamine, quinidine, spironolactone, tetraethylammonium, verapamil, and vigabatrin was determined by liquid chromatography/mass spectrometry. For reference, uptake of carnitine was measured in parallel. Our results indicate that OCTN2-mediated uptake of drugs was not significantly different from zero or, with tetraethylammonium and ergothioneine, was minute relative to carnitine. The carnitine congener mildronate, by contrast, was transported very efficiently. Thus, OCTN2 is not a general drug transporter but a highly specific carrier for carnitine and closely related molecules. Transport parameters (cellular accumulation, transporter affinity, sodium dependence) were similar for mildronate and carnitine. Efficiency of transport of mildronate was even higher than that of carnitine. Hence, our results establish that OCTN2 is a key target of the cardioprotective agent mildronate because it controls, as integral protein of the plasma membrane, cellular entry of mildronate and enables efficient access to intracellular targets. The highest levels of human OCTN2 mRNA were detected by real-time reverse transcription-polymerase chain reaction in kidney, ileum, breast, small intestine, skeletal muscle, and ovary but also in some heart and central nervous system tissues.


Assuntos
Transporte Biológico/fisiologia , Carnitina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Metilidrazinas/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Animais , Galinhas , Clonagem de Organismos , Feminino , Humanos , Reação em Cadeia da Polimerase , Ratos , Membro 5 da Família 22 de Carreadores de Soluto
2.
FEBS J ; 274(3): 783-90, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17288558

RESUMO

We have developed a novel plasmid vector, pEBTetD, for full establishment of doxycycline-inducible protein expression by just a single transfection. pEBTetD contains an Epstein-Barr virus origin of replication for stable and efficient episomal propagation in human cell lines, a cassette for continuous expression of the simple tetracycline repressor, and a cytomegalovirus-type 2 tetracycline operator (tetO2)-tetO2 promoter. As there is no integration of vector into the genome, clonal isolation of transfected cells is not necessary. Cells are thus ready for use 1 week after transfection; this contrasts with 3-12 weeks for other systems. Adequate regulation of protein expression was accomplished by abrogation of mRNA polyadenylation. In northern analysis of seven cDNAs coding for transport proteins, pools of transfected human embryonic kidney 293 cells showed on/off mRNA ratios in the order of 100:1. Cell pools were also analyzed for regulation of protein function. With two transport proteins of the plasma membrane, the on/off activity ratios were 24:1 and 34:1, respectively. With enhanced green fluorescent protein, a 23:1 ratio was observed based on fluorescence intensity data from flow cytometry. The unique advantage of our system rests on the unmodified tetracycline repressor, which is less likely, by relocation upon binding of doxycycline, to cause cellular disturbances than chimera of tetracycline repressor and eukaryotic transactivation domains. Thus, in a comprehensive comparison of on- and off-states, a steady cellular background is provided. Finally, in contrast to a system based on Flp recombinase, the set-up of our system is inherently reliable.


Assuntos
Doxiciclina/farmacologia , Herpesvirus Humano 4/genética , Plasmídeos/genética , Northern Blotting , Linhagem Celular , Citometria de Fluxo , Vetores Genéticos/genética , Humanos , Biossíntese de Proteínas/efeitos dos fármacos , Origem de Replicação/genética , Proteínas Repressoras/genética , Tetraciclina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transfecção , Replicação Viral/genética
3.
Biochem Pharmacol ; 74(2): 309-16, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17532304

RESUMO

Recently, we have identified the ergothioneine (ET) transporter ETT (gene symbol SLC22A4). Much interest in human ETT has been generated by case-control studies that suggest an association of polymorphisms in the SLC22A4 gene with susceptibility to chronic inflammatory diseases. ETT was originally designated a multispecific novel organic cation transporter (OCTN1). Here we reinvestigated, based on stably transfected 293 cells and with ET as reference substrate, uptake of quinidine, verapamil, and pyrilamine. ETT from human robustly catalyzed transport of ET (68micfrol/(minmgprotein)), but no transport of organic cations was discernible. With ET as substrate, ETT was relatively resistant to inhibition by selected drugs; the most potent inhibitor was verapamil (K(i)=11micromol/l). The natural compound hercynine and antithyroid drug methimazole are related in structure to ET. However, efficiency of ETT-mediated transport of methimazole (K(i)=7.5mmol/l) was 130-fold lower, and transport of hercynine (K(i)=1.4mmol/l) was 25-fold lower than transport of ET. ETT from mouse, upon expression in 293 cells, catalyzed high affinity, sodium-driven uptake of ET very similar to ETT from human. Additional real-time PCR experiments based on 16 human tissues revealed ETT mRNA levels considerably lower than in bone marrow. Our experiments establish that ETT is highly specific for its physiological substrate ergothioneine. ETT is not a cationic drug transporter, and it does not have high affinity for organic cation inhibitors. Detection of ETT mRNA or protein can therefore be utilized as a specific molecular marker of intracellular ET activity.


Assuntos
Betaína/análogos & derivados , Ergotioneína/metabolismo , Histidina/análogos & derivados , Metimazol/metabolismo , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Betaína/metabolismo , Transporte Biológico , Células Cultivadas , Histidina/metabolismo , Humanos , Proteínas de Transporte de Cátions Orgânicos/genética , RNA Mensageiro/análise , Especificidade por Substrato , Simportadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA