Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 96: 63-72, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34010713

RESUMO

Clinical studies indicate that obese individuals have an increased risk of developing co-morbid depressive illness and that these patients have reduced responses to antidepressant therapy, including selective serotonin reuptake inhibitors (SSRIs). Obesity, a condition of chronic mild inflammation including obesity-induced neuroinflammation, is proposed to contribute to decreases in synaptic concentrations of neurotransmitters like serotonin (5HT) by decreasing 5HT synthesis in the dorsal raphe nucleus (DRN) and/or affecting 5HT reuptake in DRN target regions like the hippocampus. In view of these observations, the goal of the current study was to examine inflammatory markers and serotonergic dynamics in co-morbid obesity and depression. Biochemical and behavioral assays revealed that high-fat diet produced an obesity and depressive-like phenotype in one cohort of rats and that these changes were marked by increases in key pro-inflammatory cytokines in the hippocampus. In real time using fast scan cyclic voltammetry (FSCV), we observed no changes in basal levels of hippocampal 5HT; however responses to escitalopram were significantly impaired in the hippocampus of obese rats compared to diet resistant rats and control rats. Further studies revealed that these neurochemical observations could be explained by increases in serotonin transporter (SERT) expression in the hippocampus driven by elevated neuroinflammation. Collectively, these results demonstrate that obesity-induced increases in neuroinflammation adversely affect SERT expression in the hippocampus of obese rats, thereby providing a potential synaptic mechanism for reduced SSRI responsiveness in obese subjects with co-morbid depressive illness.


Assuntos
Citalopram , Dieta Hiperlipídica , Animais , Citalopram/farmacologia , Hipocampo , Humanos , Obesidade/complicações , Ratos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
2.
Microsc Microanal ; 22(1): 1-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26810154

RESUMO

Mg-based implants have promising applications as biodegradable materials in medicine for orthopedic, dental, and cardiovascular therapies. During wear and degradation microdebris are released. Time-lapse multidimensional microscopy (MM) is proposed here as a suitable tool to follow, in fixed intervals over 24-h periods, the interaction between cells and particles. Results of MM show interactions of macrophages (J774) with the magnesium particles (MgPa) that led to modifications of cell size and morphology, a decrease in duplication rate, and cell damage. Corrosion products were progressively formed on the surface of the particles and turbulence was generated due to hydrogen development. Changes were more significant after treating MgPa with potassium fluoride. In order to complement MM observations, membrane damage as detected by a lactase dehydrogenase (LDH) assay and mitochondrial activity as detected by a WST-1 assay with macrophages and osteoblasts (MC3T3-E1) were compared. A more significant concentration-dependent effect was detected for macrophages exposed to MgPa than for osteoblasts. Accordingly, complementary data showed that viability and cell cycle seem to be more altered in macrophages. In addition, protein profiles and expression of proteins associated with the adhesion process changed in the presence of MgPa. These studies revealed that time-lapse MM is a helpful tool for monitoring changes of biodegradable materials and the biological surrounding in real time and in situ. This information is useful in studies related to biodegradable biomaterials.


Assuntos
Implantes Absorvíveis , Macrófagos/metabolismo , Magnésio/metabolismo , Microscopia , Osteoblastos/metabolismo , Imagem com Lapso de Tempo , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia
3.
Auton Neurosci ; 253: 103175, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677130

RESUMO

Social stress is a major risk factor for comorbid conditions including cardiovascular disease and depression. While women exhibit 2-3× the risk for these stress-related disorders compared to men, the mechanisms underlying heightened stress susceptibility among females remain largely unknown. Due to a lack in understanding of the pathophysiology underlying stress-induced comorbidities among women, there has been a significant challenge in developing effective therapeutics. Recently, a causal role for inflammation has been established in the onset and progression of comorbid cardiovascular disease/depression, with women exhibiting increased sensitivity to stress-induced immune signaling. Importantly, reduced vagal tone is also implicated in stress susceptibility, through a reduction in the vagus nerve's well-recognized anti-inflammatory properties. Thus, examining therapeutic strategies that stabilize vagal tone during stress may shed light on novel targets for promoting stress resilience among women. Recently, accumulating evidence has demonstrated that physical activity exerts cardio- and neuro-protective effects by enhancing vagal tone. Based on this evidence, this mini review provides an overview of comorbid cardiovascular and behavioral dysfunction in females, the role of inflammation in these disorders, how stress may impart its negative effects on the vagus nerve, and how exercise may act as a preventative. Further, we highlight a critical gap in the literature with regard to the study of females in this field. This review also presents novel data that are the first to demonstrate a protective role for voluntary wheel running over vagal tone and biomarkers of cardiac dysfunction in the face of social stress exposure in female rats.


Assuntos
Sistema Nervoso Autônomo , Estresse Psicológico , Nervo Vago , Animais , Estresse Psicológico/fisiopatologia , Nervo Vago/fisiologia , Feminino , Sistema Nervoso Autônomo/fisiopatologia , Sistema Nervoso Autônomo/fisiologia , Humanos , Resiliência Psicológica , Condicionamento Físico Animal/fisiologia
4.
Integr Comp Biol ; 61(6): 2048-2052, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34254127

RESUMO

In this future-spanning perspective, we examine how an agent-based model could be used to define general rules for interactions across biological systems and evolutionary time. To date, there have been a number of attempts to simulate the emergence of ecological communities using agent-based models of individuals that have evolving traits. Here we speculate whether it is possible to use this computational modeling to simulate self-organizing systems and, importantly, to decipher universal principles that govern biological interactions. This perspective is a thought exercise, meant to extrapolate from current knowledge to how we may make Jupiter-shot leaps to further advance the biosciences in the 21st century.


Assuntos
Condicionamento Físico Animal , Animais , Evolução Biológica , Simulação por Computador , Modelos Biológicos , Fenótipo
5.
Am J Physiol Endocrinol Metab ; 301(5): E978-83, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21828334

RESUMO

Insulin is believed to regulate glucose homeostasis mainly via direct effects on the liver, muscle, and adipose tissues. The contribution of insulin's central nervous system effects to disorders of glucose metabolism has received less attention. To evaluate whether postnatal reduction of insulin receptors (IRs) within the ventromedial hypothalamus (VMH), a brain region critical for glucose sensing, contributes to disorders of peripheral glucose metabolism, we microinjected a lentiviral vector expressing an antisense sequence to knockdown IRs or a control lentiviral vector into the VMH of nonobese nondiabetic rats. After 3-4 mo, we assessed 1) glucose tolerance, 2) hepatic insulin sensitivity, and 3) insulin and glucagon secretion, using the glucose clamp technique. Knockdown of IRs locally in the VMH caused glucose intolerance without altering body weight. Increments of plasma insulin during a euglycemic clamp study failed to suppress endogenous glucose production and produced a paradoxical rise in plasma glucagon in the VMH-IR knockdown rats. Unexpectedly, these animals also displayed a 40% reduction (P < 0.05) in insulin secretion in response to an identical hyperglycemic stimulus (∼220 mg/dl). Our data demonstrate that chronic suppression of VMH-IR gene expression is sufficient to impair glucose metabolism as well as α-cell and ß-cell function in nondiabetic, nonobese rats. These data suggest that insulin resistance within the VMH may be a significant contributor to the development of type 2 diabetes.


Assuntos
Intolerância à Glucose/genética , Peso Corporal Ideal , Ilhotas Pancreáticas/fisiopatologia , Pancreatopatias/genética , Receptor de Insulina/genética , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Glicemia/metabolismo , Técnicas de Silenciamento de Genes , Técnica Clamp de Glucose , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/metabolismo , Peso Corporal Ideal/genética , Peso Corporal Ideal/fisiologia , Insulina/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Pancreatopatias/induzido quimicamente , Interferência de RNA/fisiologia , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/deficiência , Receptor de Insulina/metabolismo , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos , Aumento de Peso/genética , Aumento de Peso/fisiologia
6.
Biomed Mater ; 16(5)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34265757

RESUMO

Magnetic 45S5 bioactive glass (BG) based scaffolds covered with iron-loaded hydroxyapatite (Fe-HA-BG) nanoparticles were obtained and its cytotoxicity investigated. Fe-HA nanoparticles were synthesized by a wet chemical method involving the simultaneous addition of Fe2+/Fe3+ions. BG based scaffolds were prepared by the foam replica procedure and covered with Fe-HA by dip-coating. Fe-HA-BG magnetic saturation values of 0.049 emu g-1and a very low remanent magnetization of 0.01 emu g-1were observed. The mineralization assay in simulated body fluid following Kokubo's protocol indicated that Fe-HA-BG scaffolds exhibited improved hydroxyapatite formation in comparison to uncoated scaffolds at shorter immersion times. The biocompatibility of the materialin vitrowas assessed using human osteoblast-like MG-63 cell cultures and mouse bone marrow-derived stroma cell line ST-2. Overall, the results herein discussed suggest that magnetic Fe-HA coatings seem to enhance the biological performance of 45S5 BG based scaffolds. Thus, this magnetic Fe-HA coated scaffold is an interesting system for bone tissue engineering applications and warrant further investigation.


Assuntos
Cerâmica/química , Durapatita , Vidro/química , Nanopartículas de Magnetita/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Biomineralização/efeitos dos fármacos , Linhagem Celular , Durapatita/química , Durapatita/farmacologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos
7.
Biochim Biophys Acta ; 1792(5): 444-53, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19022375

RESUMO

Central nervous system (CNS) complications resulting from diabetes is a problem that is gaining more acceptance and attention. Recent evidence suggests morphological, electrophysiological and cognitive changes, often observed in the hippocampus, in diabetic individuals. Many of the CNS changes observed in diabetic patients and animal models of diabetes are reminiscent of the changes seen in normal aging. The central commonalities between diabetes-induced and age-related CNS changes have led to the theory of advanced brain aging in diabetic patients. This review summarizes the findings of the literature as they relate to the relationship between diabetes and dementia and discusses some of the potential contributors to diabetes-induced CNS impairments.


Assuntos
Envelhecimento/metabolismo , Encéfalo/patologia , Transtornos Cognitivos/patologia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/patologia , Envelhecimento/patologia , Animais , Encéfalo/metabolismo , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Insulina/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Proteínas tau/metabolismo
8.
Int J Radiat Biol ; 85(2): 159-66, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19280469

RESUMO

PURPOSE: The present study was designed to evaluate the effects of sequential exposures to low doses of gamma-radiation that induce a radioadaptive response to a later high-dose of radiation in CHO-K1 cells. MATERIALS AND METHODS: Cells were cultured in four dilution cycles and grown to confluency. Radiation treatment was performed once per cycle with 0.1 Gy gamma-rays. After the last radiation period (chronic radiation) the culture was irradiated with a higher dose (1 Gy). Each cell culture was immediately divided into two fractions: one of them was used to carry out the comet assay and the other for the structural chromosome aberration test. In the first fraction, genotoxic damage was evaluated by degree of damage in 300 cells per experimental point. The second assay was performed with 400 cells per treatment. The statistical analysis was carried out using the chi(2)-test. RESULTS: Results from these assays demonstrated a genotoxic effect for both the adaptive and acute treatments (p < 0.001). The comet assay showed a significant increase in damage for the combined treatment when compared with 1 Gy treatment (p < 0.001). The frequency of chromosomal aberrations (CA) was lower for the combined treatment than for that using the highest radiation dose. CONCLUSIONS: These results suggest the possible induction of a radioadaptive response after the sequential exposure to very low doses of radiation. The finding of decreased cytogenetic damage after one cell cycle and not immediately after radiation could indicate the eventual potentiation of repair mechanisms.


Assuntos
Adaptação Fisiológica , Aberrações Cromossômicas/efeitos da radiação , Animais , Células CHO , Ensaio Cometa , Cricetinae , Cricetulus , Dano ao DNA
9.
Exp Neurol ; 318: 71-77, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31028829

RESUMO

In the periphery insulin plays a critical role in the regulation of metabolic homeostasis by stimulating glucose uptake into peripheral organs. In the central nervous system (CNS), insulin plays a critical role in the formation of neural circuits and synaptic connections from the earliest stages of development and facilitates and promotes neuroplasticity in the adult brain. Beyond these physiological roles of insulin, a shared feature between the periphery and CNS is that decreases in insulin receptor activity and signaling (i.e. insulin resistance) contributes to the pathological consequences of type 2 diabetes (T2DM) and obesity. Indeed, clinical and preclinical studies illustrate that CNS insulin resistance elicits neuroplasticity deficits that lead to decreases in cognitive function and increased risk of neuropsychiatric disorders. The goals of this review are to provide an overview of the literature that have identified the neuroplasticity deficits observed in T2DM and obesity, as well as to discuss the potential causes and consequences of insulin resistance in the CNS, with a particular focus on how insulin resistance impacts hippocampal neuroplasticity. Interestingly, studies that have examined the effects of hippocampal-specific insulin resistance illustrate that brain insulin resistance may impair neuroplasticity independent of peripheral insulin resistance, thereby supporting the concept that restoration of brain insulin activity is an attractive therapeutic strategy to ameliorate or reverse cognitive decline observed in patients with CNS insulin resistance such as T2DM and Alzheimer's Disease.


Assuntos
Hipocampo/fisiopatologia , Resistência à Insulina/fisiologia , Plasticidade Neuronal/fisiologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Hipocampo/metabolismo , Humanos
10.
Colloids Surf B Biointerfaces ; 182: 110346, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31325780

RESUMO

Bioactive glass (BG)-based scaffolds of 45S5 composition covered with hydroxyapatite nanoparticles loaded with Mg2+, Zn2+ and, both Mg2+ and Zn2+ ions, were developed and tested as materials for tissue engineering applications. The scaffolds were prepared by the foam replica technique and mono- and bi-metal loaded and unloaded hydroxyapatite nanoparticles (HA, Zn-HA, Mg-HA and Mg-Zn-HA) were obtained by an adaptation of the wet chemical deposition method. Coating of BG with these nanoparticles was performed by dip-coating to obtain HA-BG, Zn-HA-BG, Mg-HA-BG and Mg-Zn-HA-BG scaffolds. As predictor of the bone bonding ability of the produced scaffolds, in this study we investigated the formation of an apatite layer on the scaffold surfaces in the presence of simulated body fluid. The cytotoxicity and osteogenic properties of the materials in vitro was evaluated using human osteoblast-like MG-63 cell cultures. The mineralization assay following Kokubo's protocol indicated that bi-metal loaded Mg-Zn-HA-BG scaffolds exhibited higher/faster bioactivity than mono-metal loaded scaffolds while mineralization of HA-BG, Zn-HA-BG and Mg-HA-BG was similar to that of uncoated scaffolds. Moreover, an increase of proliferation of MG-63 cells after 48 h and 7 days was measured by BrdU assays for Mg-Zn-HA-BG scaffolds. In agreement with these results, SEM images confirmed increased interaction between these scaffolds and cells, in comparison to that observed for mono-metal-loaded HA-coated scaffolds. Altogether, the obtained results suggest that nanocrystalline Mg-Zn-HA coatings enhance the biological performance of standard scaffolds of 45S5 BG composition. Thus these novel ion doped HA coated scaffolds are attractive systems for bone tissue engineering.


Assuntos
Cerâmica/química , Materiais Revestidos Biocompatíveis/química , Durapatita/química , Vidro/química , Magnésio/química , Osteoblastos/efeitos dos fármacos , Alicerces Teciduais , Zinco/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Líquidos Corporais/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cerâmica/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/farmacologia , Humanos , Nanopartículas/química , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos
11.
Eur J Pharmacol ; 585(1): 64-75, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18387603

RESUMO

Unlike responses to acute stressful events that are protective and adaptive in nature, chronic stress elicits neurochemical, neuroanatomical and cellular changes that may have deleterious consequences upon higher brain functioning. For example, while exposure to acute stress facilitates memory formation and consolidation, chronic stress or chronic exposure to stress levels of glucocorticoids impairs cognitive performance. Chronic stress or glucocorticoid exposure, as well as impairments in hypothalamic-pituitary-adrenal (HPA) axis function are proposed to participate in the etiology and progression of neurological disorders such as depressive illness, anxiety disorders and post-traumatic stress disorder (PTSD). HPA axis dysfunction, impaired stress responses and elevated basal levels of glucocorticoids are also hallmark features of experimental models of type 1 and type 2 diabetes, as well as diabetic subjects in poor glycemic control. Such results suggest that stress and glucocorticoids contribute to the neurological complications observed in diabetes patients. Interestingly, many of the hyperglycemia mediated changes in the brain are similar to those observed in depressive illness patients and in experimental models of chronic stress. Such results suggest that common mechanisms may be involved in the development of the neurological complications associated with Anxiety, Depressive illness and Diabetes: the As and Ds of stress. The aim of the current review will be to discuss the mechanisms through which limbic structures such as the hippocampus and amygdala respond and adapt to the deleterious consequences of chronic stress and hyperglycemia.


Assuntos
Estresse Fisiológico/fisiopatologia , Estresse Fisiológico/psicologia , Animais , Ansiedade/fisiopatologia , Ansiedade/psicologia , Doença Crônica , Transtorno Depressivo/fisiopatologia , Transtorno Depressivo/psicologia , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Humanos , Hiperglicemia/fisiopatologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Resistência à Insulina , Sistema Límbico/fisiopatologia , Plasticidade Neuronal , Sistema Hipófise-Suprarrenal/fisiopatologia , Estresse Fisiológico/metabolismo
12.
Front Neurosci ; 12: 215, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743868

RESUMO

Research in animals and humans has shown that type 2 diabetes and its prodromal state, insulin resistance, promote major pathological hallmarks of Alzheimer's disease (AD), such as the formation of amyloid plaques and neurofibrillary tangles (NFT). Worrisomely, dysregulated amyloid beta (Aß) metabolism has also been shown to promote central nervous system insulin resistance; although the role of tau metabolism remains controversial. Collectively, as proposed in this review, these findings suggest the existence of a mechanistic interplay between AD pathogenesis and disrupted insulin signaling. They also provide strong support for the hypothesis that pharmacologically restoring brain insulin signaling could represent a promising strategy to curb the development and progression of AD. In this context, great hopes have been attached to the use of intranasal insulin. This drug delivery method increases cerebrospinal fluid concentrations of insulin in the absence of peripheral side effects, such as hypoglycemia. With this in mind, the present review will also summarize current knowledge on the efficacy of intranasal insulin to mitigate major pathological symptoms of AD, i.e., cognitive impairment and deregulation of Aß and tau metabolism.

13.
Neuropharmacology ; 136(Pt B): 196-201, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180222

RESUMO

Accumulating evidence suggests that disrupted brain insulin signaling promotes the development and progression of Alzheimer's disease (AD), driving clinicians to target this circuitry. While both traditional and more modern antidiabetics show promise in combating insulin resistance, intranasal insulin appears to be the most efficient method of boosting brain insulin. Furthermore, intranasal delivery elegantly avoids adverse effects from peripheral insulin administration. However, there remain significant open questions regarding intranasal insulin's efficacy, safety, and potential as an adjunct or mono-therapy. Thus, this review aims to critically evaluate the present evidence and future potential of intranasal insulin as a meaningful treatment for AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'


Assuntos
Doença de Alzheimer/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Nootrópicos/administração & dosagem , Administração Intranasal , Doença de Alzheimer/metabolismo , Animais , Humanos , Insulina/metabolismo
14.
Eur J Pharmacol ; 565(1-3): 68-75, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17368617

RESUMO

Chronic restraint stress affects hippocampal and amygdalar synaptic plasticity as determined by electrophysiological, morphological and behavioral measures, changes that are inhibited by some but not all antidepressants. The efficacy of some classes of antidepressants is proposed to involve increased phosphorylation of cAMP response element binding protein (CREB), leading to increased expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF). Conversely, some studies suggest that acute and chronic stress downregulate BDNF expression and activity. Accordingly, the aim of the current study was to examine total and phosphorylated CREB (pCREB), as well as BDNF mRNA and protein levels in the hippocampus and amygdala of rats subjected to chronic restraint stress in the presence and absence of the antidepressant tianeptine. In the hippocampus, chronic restraint stress increased pCREB levels without affecting BDNF mRNA or protein expression. Tianeptine administration had no effect upon these measures in the hippocampus. In the amygdala, BDNF mRNA expression was not modulated in chronic restraint stress rats given saline in spite of increased pCREB levels. Conversely, BDNF mRNA levels were increased in the amygdala of chronic restraint stress/tianeptine rats in the absence of changes in pCREB levels when compared to non-stressed controls. Amygdalar BDNF protein increased while pCREB levels decreased in tianeptine-treated rats irrespective of stress conditions. Collectively, these results demonstrate that tianeptine concomitantly decreases pCREB while increasing BDNF expression in the rat amygdala, increases in neurotrophic factor expression that may participate in the enhancement of amygdalar synaptic plasticity mediated by tianeptine.


Assuntos
Tonsila do Cerebelo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Estresse Psicológico/metabolismo , Tiazepinas/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/análise , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/análise , Hipocampo/química , Hipocampo/metabolismo , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Restrição Física
15.
Physiol Behav ; 176: 207-213, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28267584

RESUMO

The adipocyte-derived hormone leptin is an important regulator of body weight and metabolism through activation of brain leptin receptors expressed in regions such as the hypothalamus. Beyond these well described and characterized activities of leptin in the hypothalamus, it is becoming increasingly clear that the central activities of leptin extend to the hippocampus. Indeed, leptin receptors are expressed in the hippocampus where these receptors are proposed to mediate various aspects of hippocampal synaptic plasticity that ultimately impact cognitive function. This concept is supported by studies demonstrating that leptin promotes hippocampal-dependent learning and memory, as well as studies indicating that leptin resistance is associated with deficits in hippocampal-dependent behaviors and in the induction of depressive-like behaviors. The effects of leptin on cognitive/behavioral plasticity in the hippocampus may be regulated by direct activation of leptin receptors expressed in the hippocampus; additionally, leptin-mediated activation of synaptic networks that project to the hippocampus may also impact hippocampal-mediated behaviors. In view of these previous observations, the goal of this review will be to discuss the mechanisms through which leptin facilitates cognition and behavior, as well as to dissect the loci at which leptin resistance leads to impairments in hippocampal synaptic plasticity, including the development of cognitive deficits and increased risk of depressive illness in metabolic disorders such as obesity and type 2 diabetes mellitus (T2DM).


Assuntos
Hipocampo/metabolismo , Leptina/metabolismo , Transtornos Mentais/patologia , Animais , Humanos , Leptina/uso terapêutico , Transtornos Mentais/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
Colloids Surf B Biointerfaces ; 160: 238-246, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28942158

RESUMO

The interactions that could be built between the biomaterials and tissue- microenvironments are very complex, especially in case of degradable metals that generate a broad variety of degradation products. The interfacial problems are particularly relevant for Fe-based materials that have been proposed for the development of biodegradable implants. The cell metabolism could be affected by the accumulation of insoluble Fe-containing degradation products that has been observed in vitro and in vivo as a coarse granular brownish material around the implant. However, the relative importance of each Fe-species (soluble and insoluble) on the cellular behavior of the surrounding cells, particularly on the generation of reactive species (RS), is not completely elucidated. The aim of this study is to evaluate the processes occurring at the Fe-biomaterial/cells interfacial region, and to discriminate the effects of soluble and insoluble corrosion products released by the bulk metal (Fe- microparticles (Fe0p) or Fe0 ring) on the adjacent cells, mainly in relation to RS generation. With this purpose Fe0p and Fe0 ring were incubated with fibroblast cells (BALB/c 3T3 line) for 24 and 48h periods. Then different techniques were used, such as the dichlorofluorescein diacetate assay (DCFH2-DA) for detection of RS, acridine orange dye for cell viability, total protein content determinations, Prussian Blue staining and TEM observations. To individualize the effects of soluble and insoluble species, independent experiments with Fe3+-salts were performed. Overall data indicate that RS generation by cells exposed to the degradation products of Fe-based biomaterials is more dependent on the presence of insoluble products than on soluble Fe species.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/farmacologia , Ferro/química , Espécies Reativas de Oxigênio/química , Animais , Materiais Biocompatíveis/química , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Corrosão , Ferro/farmacologia , Camundongos , Células NIH 3T3 , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Solubilidade
18.
Mater Sci Eng C Mater Biol Appl ; 58: 372-80, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26478323

RESUMO

This work is focused on the processes occurring at the bioabsorbable metallic biomaterial/cell interfaces that may lead to toxicity. A critical analysis of the results obtained when degradable metal disks (pure Mg and rare earth-containing alloys (ZEK100 alloys)) are in direct contact with cell culture and those obtained with indirect methods such as the use of metal salts and extracts was made. Viability was assessed by Acridine Orange dye, neutral red and clonogenic assays. The effects of concentration of corrosion products and possible joint effects of the binary and ternary combinations of La, Zn and Mg ions, as constituents of ZEK alloys, were evaluated on a mammalian cell culture. In all cases more detrimental effects were found for pure Mg than for the alloys. Experiments with disks showed that gradual alterations in pH and in the amount of corrosion products were better tolerated by cells and resulted in higher viability than abrupt changes. In addition, viability was dependent on the distance from the source of ions. Experiments with extracts showed that the effect of insoluble degradation products was highly detrimental. Indirect tests with Zn ions revealed that harmful effects may be found at concentrations ≥ 150 µM and at ≥ 100 µM in mixtures with Mg. These mixtures lead to more deleterious effects than single ions. Results highlight the need to develop a battery of tests to evaluate the biocompatibility of bioabsorbable biomaterials.


Assuntos
Implantes Absorvíveis , Ligas/química , Magnésio/química , Ligas/farmacologia , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Corrosão , Cricetinae , Cricetulus , Íons , Magnésio/farmacologia
19.
Behav Neurosci ; 119(5): 1389-95, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16300445

RESUMO

The genetically obese Zucker rat is a widely investigated model of pathological changes associated with type 2 diabetes. To assess cognitive function, obese and lean Zucker rats were tested on a variable-interval delayed alternation test of learning and memory. There were no group differences in learning the alternation rule or at short intervals, but obese rats were impaired at longer intervals where performance is hippocampus dependent. Plasma membrane association of the insulin sensitive glucose transporter, GLUT4, was reduced in the hippocampus of obese rats in the absence of changes in total GLUT4 and insulin receptor expression. These results parallel those of human studies in pointing to the susceptibility of the hippocampus and related structures to the adverse environment of diabetes mellitus.


Assuntos
Cognição/fisiologia , Resistência à Insulina/fisiologia , Transtornos da Memória/fisiopatologia , Obesidade/fisiopatologia , Análise de Variância , Animais , Comportamento Animal , Glicemia , Western Blotting/métodos , Membrana Celular/metabolismo , Comportamento de Escolha/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Transtornos da Memória/metabolismo , Desempenho Psicomotor , Ratos , Ratos Zucker , Receptor de Insulina/metabolismo , Receptores de AMPA/metabolismo , Esquema de Reforço , Fatores de Tempo
20.
Neurobiol Stress ; 1: 195-208, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26844236

RESUMO

Neuroplasticity may be defined as the ability of the central nervous system (CNS) to respond to changes in the internal and external environment and it is well established that some stimuli have the ability to facilitate or impair neuroplasticity depending on the pre-existing milieu. A classic example of a stimulus that can both facilitate and impair neuroplasticity is stress. Indeed, the ability of CNS to respond to acute stress is often dependent upon the prior stress history of the individual. While responses to acute stress are often viewed as adaptive in nature, stress reactivity in subjects with prior chronic stress experiences are often linked to neuropsychiatric disorders, including major depressive disorder, post-traumatic stress disorder (PTSD) and anxiety. In rodent studies, chronic stress exposure produces structural and functional alterations in the hippocampus and medial prefrontal cortex that are consistent across different types of stress paradigms. Conversely, the amygdala appears to exhibit differential structural and functional responses to stress that are dependent on a variety of factors, including the type of stressor performed and the duration of the stress paradigm. This is most evident in output measures including morphological analysis of amygdala neurons, measurement of glutamatergic tone in amygdalar subdivisions and the analysis of amygdala-centric behaviors. Accordingly, this review will provide an overview of the effects of stress on the structural and functional plasticity of the rodent amygdala, especially in relation to the differential effects of repeated or chronic stress paradigms on dendritic architecture, neurochemistry of the glutamatergic system and behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA