Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Bioorg Med Chem Lett ; 25(4): 936-9, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25595681

RESUMO

The discovery of C2-symmetric bis-thienoimidazoles HCV NS5A inhibitors is herein reported. Two straightforward approaches to access the requisite diyne and biphenyl linker moieties are described. This study revealed the paramount importance of the aromatic character of the linker to achieve high genotype 1a potency.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Imidazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Imidazóis/química
3.
Bioorg Med Chem Lett ; 25(4): 948-51, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25577039

RESUMO

Inhibitors of the HCV NS5A nonstructural protein are showing promising clinical potential in the treatment of hepatitis C when used in combination with other direct-acting antiviral agents. Current NS5A clinical candidates such as daclatasvir, ledipasvir, and ombitasvir share a common pharmacophore that features a pair of (S)-methoxycarbonylvaline capped pyrrolidines linked to various cores by amides, imidazoles and/or benzimidazoles. In this Letter, we describe the evaluation of NS5A inhibitors which contain alternative heteroaromatic replacements for these amide mimetics. The SAR knowledge gleaned in the optimization of scaffolds containing benzoxazoles was parlayed toward the identification of potent NS5A inhibitors containing other heteroaromatic replacements such as indoles and imidazopyridines.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Relação Estrutura-Atividade
4.
Bioorg Med Chem Lett ; 25(4): 944-7, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25577041

RESUMO

The treatment of HCV with highly efficacious, well-tolerated, interferon-free regimens is a compelling clinical goal. Trials employing combinations of direct-acting antivirals that include NS5A inhibitors have shown significant promise in meeting this challenge. Herein, we describe our efforts to identify inhibitors of NS5A and report on the discovery of benzimidazole-containing analogs with subnanomolar potency against genotype 1a and 1b replicons. Our SAR exploration of 4-substituted pyrrolidines revealed that the subtle inclusion of a 4-methyl group could profoundly increase genotype 1a potency in multiple scaffold classes.


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Pirrolidinas/farmacologia , Proteínas não Estruturais Virais/efeitos dos fármacos , Antivirais/química , Benzimidazóis/química , Genótipo , Pirrolidinas/química
5.
Bioorg Med Chem Lett ; 24(9): 2177-81, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24685546

RESUMO

A series of dual targeting inhibitors of bacterial gyrase B and topoisomerase IV were identified and optimized to mid-to-low nanomolar potency against a variety of bacteria. However, in spite of seemingly adequate exposure achieved upon IV administration, the in vivo efficacy of the early lead compounds was limited by high levels of binding to serum proteins. To overcome this limitation, targeted serum shift prediction models were generated for each subclass of interest and were applied to the design of prospective analogs. As a result, numerous compounds with comparable antibacterial potency and reduced protein binding were generated. These efforts culminated in the synthesis of compound 10, a potent inhibitor with low serum shift that demonstrated greatly improved in vivo efficacy in two distinct rat infection models.


Assuntos
Antibacterianos/sangue , Bactérias/enzimologia , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , Inibidores da Topoisomerase II/sangue , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/enzimologia , Infecções Bacterianas/microbiologia , Proteínas Sanguíneas/metabolismo , DNA Topoisomerase IV/metabolismo , Humanos , Ratos , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/metabolismo , Inibidores da Topoisomerase II/farmacologia
6.
Bioorg Med Chem Lett ; 20(9): 2828-31, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20356737

RESUMO

Bacterial DNA gyrase is an attractive target for the investigation of new antibacterial agents. Inhibitors of the GyrB subunit, which contains the ATP-binding site, are described in this communication. Novel, substituted 5-(1H-pyrazol-3-yl)thiazole compounds were identified as inhibitors of bacterial gyrase. Structure-guided optimization led to greater enzymatic potency and moderate antibacterial potency. Data are presented for the demonstration of selective enzyme inhibition of Escherichia coli GyrB over Staphylococcus aureus GyrB.


Assuntos
Antibacterianos/química , Inibidores Enzimáticos/química , Tiazóis/química , Inibidores da Topoisomerase II , Antibacterianos/síntese química , Antibacterianos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , DNA Girase/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/farmacologia
7.
ACS Med Chem Lett ; 6(7): 822-6, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26191374

RESUMO

Benzimidazole 1 is the lead compound resulting from an antibacterial program targeting dual inhibitors of bacterial DNA gyrase and topoisomerase IV. With the goal of improving key drug-like properties, namely, the solubility and the formulability of 1, an effort to identify prodrugs was undertaken. This has led to the discovery of a phosphate ester prodrug 2. This prodrug is rapidly cleaved to the parent drug molecule upon both oral and intravenous administration. The prodrug achieved equivalent exposure of 1 compared to dosing the parent in multiple species. The prodrug 2 has improved aqueous solubility, simplifying both intravenous and oral formulation.

8.
ACS Med Chem Lett ; 5(3): 240-3, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24900811

RESUMO

The discovery of potent thienoimidazole-based HCV NS5A inhibitors is herein reported. A novel method to access the thienoimidazole [5,5]-bicyclic system is disclosed. This method gave access to a common key intermediate (6) that was engaged in Suzuki or Sonogashira reactions with coupling partners bearing different linkers. A detailed study of the structure-activity relationship (SAR) of the linkers revealed that aromatic linkers with linear topologies are required to achieve high potency for both 1a and 1b HCV genotypes. Compound 20, with a para-phenyl linker, was identified as a potential lead displaying potencies of 17 and 8 pM against genotype 1a and 1b replicons, respectively.

9.
J Med Chem ; 57(21): 8792-816, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25317480

RESUMO

Compound 3 is a potent aminobenzimidazole urea with broad-spectrum Gram-positive antibacterial activity resulting from dual inhibition of bacterial gyrase (GyrB) and topoisomerase IV (ParE), and it demonstrates efficacy in rodent models of bacterial infection. Preclinical in vitro and in vivo studies showed that compound 3 covalently labels liver proteins, presumably via formation of a reactive metabolite, and hence presented a potential safety liability. The urea moiety in compound 3 was identified as being potentially responsible for reactive metabolite formation, but its replacement resulted in loss of antibacterial activity and/or oral exposure due to poor physicochemical parameters. To identify second-generation aminobenzimidazole ureas devoid of reactive metabolite formation potential, we implemented a metabolic shift strategy, which focused on shifting metabolism away from the urea moiety by introducing metabolic soft spots elsewhere in the molecule. Aminobenzimidazole urea 34, identified through this strategy, exhibits similar antibacterial activity as that of 3 and did not label liver proteins in vivo, indicating reduced/no potential for reactive metabolite formation.


Assuntos
Antibacterianos/síntese química , Benzimidazóis/síntese química , Inibidores Enzimáticos/síntese química , Animais , Antibacterianos/metabolismo , Benzimidazóis/metabolismo , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/metabolismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/metabolismo , Ureia/análogos & derivados , Ureia/síntese química , Ureia/metabolismo
10.
J Med Chem ; 51(17): 5243-63, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18690678

RESUMO

The discovery of new antibacterial agents with novel mechanisms of action is necessary to overcome the problem of bacterial resistance that affects all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV are well-characterized clinically validated targets of the fluoroquinolone antibiotics which exert their antibacterial activity through inhibition of the catalytic subunits. Inhibition of these targets through interaction with their ATP sites has been less clinically successful. The discovery and characterization of a new class of low molecular weight, synthetic inhibitors of gyrase and topoisomerase IV that bind to the ATP sites are presented. The benzimidazole ureas are dual targeting inhibitors of both enzymes and possess potent antibacterial activity against a wide spectrum of relevant pathogens responsible for hospital- and community-acquired infections. The discovery and optimization of this novel class of antibacterials by the use of structure-guided design, modeling, and structure-activity relationships are described. Data are presented for enzyme inhibition, antibacterial activity, and in vivo efficacy by oral and intravenous administration in two rodent infection models.


Assuntos
Antibacterianos/química , Benzimidazóis/farmacologia , DNA Topoisomerase IV/antagonistas & inibidores , Inibidores da Topoisomerase II , Ureia/análogos & derivados , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias , Benzimidazóis/química , Sítios de Ligação , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Roedores , Relação Estrutura-Atividade , Ureia/farmacologia
11.
Antimicrob Agents Chemother ; 51(2): 657-66, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17116675

RESUMO

A structure-guided drug design approach was used to optimize a novel series of aminobenzimidazoles that inhibit the essential ATPase activities of bacterial DNA gyrase and topoisomerase IV and that show potent activities against a variety of bacterial pathogens. Two such compounds, VRT-125853 and VRT-752586, were characterized for their target specificities and preferences in bacteria. In metabolite incorporation assays, VRT-125853 inhibited both DNA and RNA synthesis but had little effect on protein synthesis. Both compounds inhibited the maintenance of negative supercoils in plasmid DNA in Escherichia coli at the MIC. Sequencing of DNA corresponding to the GyrB and ParE ATP-binding regions in VRT-125853- and VRT-752586-resistant mutants revealed that their primary target in Staphylococcus aureus and Haemophilus influenzae was GyrB, whereas in Streptococcus pneumoniae it was ParE. In Enterococcus faecalis, the primary target of VRT-125853 was ParE, whereas for VRT-752586 it was GyrB. DNA transformation experiments with H. influenzae and S. aureus proved that the mutations observed in gyrB resulted in decreased susceptibilities to both compounds. Novobiocin resistance-conferring mutations in S. aureus, H. influenzae, and S. pneumoniae were found in gyrB, and these mutants showed little or no cross-resistance to VRT-125853 or VRT-752586 and vice versa. Furthermore, gyrB and parE double mutations increased the MICs of VRT-125853 and VRT-752586 significantly, providing evidence of dual targeting. Spontaneous frequencies of resistance to VRT-752586 were below detectable levels (<5.2x10(-10)) for wild-type E. faecalis but were significantly elevated for strains containing single and double target-based mutations, demonstrating that dual targeting confers low levels of resistance emergence and the maintenance of susceptibility in vitro.


Assuntos
Antibacterianos , Benzimidazóis , DNA Topoisomerase IV/antagonistas & inibidores , Inibidores da Topoisomerase II , Ureia/análogos & derivados , Antibacterianos/química , Antibacterianos/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Desenho de Fármacos , Escherichia coli , Testes de Sensibilidade Microbiana , Mutação , Staphylococcus aureus , Streptococcus pneumoniae , Relação Estrutura-Atividade , Ureia/química , Ureia/farmacologia
12.
Antimicrob Agents Chemother ; 50(4): 1228-37, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16569833

RESUMO

Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities.


Assuntos
Antibacterianos/farmacologia , Benzimidazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores da Topoisomerase II , Ureia/análogos & derivados , Proteínas Sanguíneas/metabolismo , DNA Girase , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA