Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 21(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861494

RESUMO

Endocannabinoids are natural lipid molecules whose levels are regulated by specific biosynthetic and degradative enzymes. They bind to and activate two main cannabinoid receptors type 1 (CB1) and type 2 (CB2), and together with their metabolizing enzymes form the "endocannabinoid system" (ECS). In the last years, the relevance of endocannabinoids (eCBs) as critical modulators in various aspects of male reproduction has been pointed out. Mammalian male germ cells, from mitotic to haploid stage, have a complete ECS which is modulated during spermatogenesis. Compelling evidence indicate that in the testis an appropriate "eCBs tone", associated to a balanced CB receptors signaling, is critical for spermatogenesis and for the formation of mature and fertilizing spermatozoa. Any alteration of this system negatively affects male reproduction, from germ cell differentiation to sperm functions, and might have also an impact on testicular tumours. Indeed, most of testicular tumours develop during early germ-cell development in which a maturation arrest is thought to be the first key event leading to malignant transformation. Considering the ever-growing number and complexity of the data on ECS, this review focuses on the role of cannabinoid receptors CB1 and CB2 signaling in male germ cells development from gonocyte up to mature spermatozoa and in the induction of epigenetic alterations in these cells which might be transmitted to the progeny. Furthermore, we present new evidence on their relevance in testicular cancer.


Assuntos
Suscetibilidade a Doenças , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Embrionárias de Células Germinativas/etiologia , Neoplasias Embrionárias de Células Germinativas/metabolismo , Receptores de Canabinoides/metabolismo , Transdução de Sinais , Neoplasias Testiculares/etiologia , Neoplasias Testiculares/metabolismo , Animais , Biomarcadores , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/patologia , Reprodução , Espermatogênese , Neoplasias Testiculares/patologia
2.
FASEB J ; 30(4): 1453-63, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26671998

RESUMO

Type 2 cannabinoid receptor (CB2) has been proposed to play a pivotal role in meiotic entry of male germ cells, similar to retinoic acid (RA). In this study, we showed that activation of CB2with the specific agonist JWH133 [3-(1',1'-dimethylbutyl)-1-deoxy-8-THC] (IC5010(-6)M) mimics epigenetic events induced by RA (IC5010(-7)M) in spermatogonia. Both JWH133 and RA treatments stimulate the expression of the meiotic genes c-KitandStra8, by up-regulating H3K4me3 and down-regulating H3K9me2 levels in genomic regions flanking the transcription start site. Moreover, both agents increase the expression ofPrdm9, the gene encoding a meiosis-specific histone, H3K4me3 methyltransferase, which marks hotspots of recombination in prophase I, thus resulting in a global increase in H3K4me3. Notably, prolonged administration of JWH133 to immature 7 dpp CD-1 mice induced an acceleration of the onset of spermatogenesis, whereas the specific CB2antagonist delayed germ cell differentiation. Thus, both hyper- and hypostimulation of CB2disrupted the temporal dynamics of the spermatogenic cycle. These findings highlight the importance of proper CB2signaling for the maintenance of a correct temporal progression of spermatogenesis and suggest a possible adverse effect of cannabis in deregulating this process.-Di Giacomo, D., De Domenico, E., Sette, C., Geremia, R., Grimaldi, P. Type 2 cannabinoid receptor contributes to the physiological regulation of spermatogenesis.


Assuntos
Diferenciação Celular/fisiologia , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais/fisiologia , Espermatogênese/fisiologia , Espermatogônias/fisiologia , Animais , Western Blotting , Canabinoides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Indóis/farmacologia , Lisina/metabolismo , Masculino , Meiose/efeitos dos fármacos , Meiose/genética , Metilação/efeitos dos fármacos , Camundongos , Microscopia de Fluorescência , Regiões Promotoras Genéticas/genética , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Espermatogônias/citologia , Espermatogônias/efeitos dos fármacos , Tretinoína/farmacologia
3.
Life (Basel) ; 14(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38541652

RESUMO

Germ cell tumors (GCTs) are relatively rare tumors. However, they are the most diagnosed malignancies occurring in the testis among men aged between 15 and 40 years. Despite high aneuploidy and a paucity of somatic mutations, several genomic and transcriptomic assays have identified a few significantly mutated somatic genes, primarily KIT and K-RAS. The receptor Tyrosine Kinase (RTK) pathway and the downstream related Mitogen-Activated Protein Kinase (MAPK) cascades are crucial signal transduction pathways that preside over various cellular processes, including proliferation, differentiation, apoptosis, and responses to stressors. They are well described in solid malignancies, where many of the involved factors are used as prognostic molecular markers or targets for precision therapy. This narrative review focused, in the first part, on PGCs' survival/proliferation and differentiation and on the genetic and epigenetic factors involved in the pathogenesis of testicular germ cell tumors (TGCTs) and, in the second part, on the most recent investigations about the KIT-RAS pathway in TGCTs and in other cancers, highlighting the efforts that are being made to identify targetable markers for precision medicine approaches.

4.
Cell Mol Life Sci ; 69(24): 4177-90, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22802127

RESUMO

Estrogen (E(2)) regulates spermatogenesis, yet its direct target genes have not been identified in the testis. Here, we cloned the proximal 5' flanking region of the mouse fatty acid amide hydrolase (faah) gene upstream of the luciferase reporter gene, and demonstrated its promoter activity and E(2) inducibility in primary mouse Sertoli cells. Specific mutations in the E(2) response elements (ERE) of the faah gene showed that two proximal ERE sequences (ERE2/3) are essential for E(2)-induced transcription, and chromatin immunoprecipitation experiments showed that E(2) induced estrogen receptor ß binding at ERE2/3 sites in the faah promoter in vivo. Moreover, the histone demethylase LSD1 was found to be associated with ERE2/3 sites and to play a role in mediating E(2) induction of FAAH expression. E(2) induced epigenetic modifications at the faah proximal promoter compatible with transcriptional activation by remarkably decreasing methylation of both DNA at CpG site and histone H3 at lysine 9. Finally, FAAH silencing abolished E(2) protection against apoptosis induced by the FAAH substrate anandamide. Taken together, our results identify FAAH as the first direct target of E(2).


Assuntos
Amidoidrolases/genética , Estrogênios/farmacologia , Regulação da Expressão Gênica , Oxirredutases N-Desmetilantes/fisiologia , Células de Sertoli/metabolismo , Amidoidrolases/química , Amidoidrolases/fisiologia , Animais , Apoptose , Sequência de Bases , Metilação de DNA/efeitos dos fármacos , Receptor beta de Estrogênio/metabolismo , Receptor beta de Estrogênio/fisiologia , Histona Desmetilases , Histonas/metabolismo , Masculino , Metilação , Camundongos , Dados de Sequência Molecular , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Regiões Promotoras Genéticas , Células de Sertoli/efeitos dos fármacos
5.
Vitam Horm ; 122: 75-106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36863802

RESUMO

In mammals, male germ cell development starts during fetal life and is carried out in postnatal life with the formation of sperms. Spermatogenesis is the complex and highly orderly process during which a group of germ stem cells is set at birth, starts to differentiate at puberty. It proceeds through several stages: proliferation, differentiation, and morphogenesis and it is strictly regulated by a complex network of hormonal, autocrine and paracrine factors and it is associated with a unique epigenetic program. Altered epigenetic mechanisms or inability to respond to these factors can impair the correct process of germ development leading to reproductive disorders and/or testicular germ cell cancer. Among factors regulating spermatogenesis an emerging role is played by the endocannabinoid system (ECS). ECS is a complex system comprising endogenous cannabinoids (eCBs), their synthetic and degrading enzymes, and cannabinoid receptors. Mammalian male germ cells have a complete and active ECS which is modulated during spermatogenesis and that crucially regulates processes such as germ cell differentiation and sperm functions. Recently, cannabinoid receptor signaling has been reported to induce epigenetic modifications such as DNA methylation, histone modifications and miRNA expression. Epigenetic modifications may also affect the expression and function of ECS elements, highlighting the establishment of a complex mutual interaction. Here, we describe the developmental origin and differentiation of male germ cells and testicular germ cell tumors (TGCTs) focusing on the interplay between ECS and epigenetic mechanisms involved in these processes.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Recém-Nascido , Animais , Humanos , Masculino , Endocanabinoides , Neoplasias Testiculares/genética , Sêmen , Epigênese Genética , Espermatogênese , Neoplasias Embrionárias de Células Germinativas/genética , Mamíferos
6.
Mech Ageing Dev ; 213: 111840, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37385302

RESUMO

Cannabis use during pregnancy is increasing in the last few years potentially because of decreased perception of the risk of harm. Regardless, recent evidence demonstrated that prenatal cannabis exposure is associated with adverse outcomes. To date there is limited evidence of the impact of cannabis exposure during pregnancy on the reproductive health of the offspring. The biological effects of cannabis are mediated by two cannabinoid receptors, CB1 and CB2. We previously demonstrated that CB2 is highly expressed in mouse male and female fetal germ cells. In this study, we investigated the effects of prenatal exposure to a selective CB2 agonist, JWH-133, on the long-term reproductive health of male and female offspring and on the involved molecular epigenetic mechanisms. Notably, we focused on epigenetic histone modifications that can silence or activate gene expression, playing a pivotal role in cell differentiation. We reported that prenatal activation of CB2 has a sex-specific impact on germ cell development of the offspring. In male it determines a delay of germ cell differentiation coinciding with an enrichment of H3K27me3, while in female it causes a reduction of the follicles number through an increased apoptotic process not linked to modified H3K27me3 level.


Assuntos
Código das Histonas , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Camundongos , Masculino , Animais , Feminino , Histonas , Reprodução , Células Germinativas , Receptor CB1 de Canabinoide
7.
Mech Ageing Dev ; 212: 111820, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178832

RESUMO

To follow mast cells (MCs) distribution during aging and inflammation, we characterized two transgenic mouse models in which the EGFP expression is controlled by 9 kb or 12 kb of Kit gene promoter, defined as p18 and p70, respectively. We detected EGFP-positive cells in the serosal surfaces of the peritoneum, pleuras and pericardium, mucosal cavities, and connective tissue of almost all organs including gonads of p70, but not of p18 mice. By FACS and immunofluorescence for FcεR1, Kit and ß7-integrin, we found that these EGFP positive cells were MCs. In non-inflammatory conditions, a higher percentage of EGFP positive cells was found in juvenile with respect to adult serosal surfaces, but no differences between males and females at both developmental ages. We found, however, a striking difference in developing gonads, with low numbers of EGFP positive cells in fetal ovaries compared to age matched testes. Under inflammatory conditions caused by high fat diet (HFD), mice showed an increase in serosal EGFP positve cells. Altogether our results identify a regulatory region of the Kit gene, activated in MCs and that directing EGFP expression, can be employed to trace this immune cell type throughout the organism and in different animal conditions.


Assuntos
Envelhecimento , Inflamação , Masculino , Feminino , Camundongos , Animais , Inflamação/genética , Camundongos Transgênicos , Regiões Promotoras Genéticas , Diferenciação Celular , Envelhecimento/genética
8.
Proc Natl Acad Sci U S A ; 106(27): 11131-6, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19541620

RESUMO

The exact role of the endocannabinoid system (ECS) during spermatogenesis has not been clarified. We used purified germ cell fractions representative of all phases of spermatogenesis and primary cultures of spermatogonia. This approach allowed the precise quantification of the cannabinoid receptor ligands, anandamide and 2-arachidonoylglycerol, and of the expression at transcriptional and transductional levels of their metabolic enzymes and receptors. Our data indicate that male mouse germ cells possess an active and complete ECS, which is modulated during meiosis, and suggest the presence of an autocrine endocannabinoid signal during spermatogenesis. Mitotic cells possess higher levels of 2-arachidonoylglycerol, which decrease in spermatocytes and spermatids. Accordingly, spermatogonia express higher and lower levels of 2-arachidonoylglycerol biosynthetic and degrading enzymes, respectively, as compared to meiotic and postmeiotic cells. This endocannabinoid likely plays a pivotal role in promoting the meiotic progression of germ cells by activating CB(2) receptors. In fact, we found that the selective CB(2) receptor agonist, JWH133, induced the Erk 1/2 MAPK phosphorylation cascade in spermatogonia and their progression toward meiosis, because it increased the number of cells positive for SCP3, a marker of meiotic prophase, and the expression of early meiotic prophase genes.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Receptor CB2 de Canabinoide/metabolismo , Espermatogênese , Animais , Ácidos Araquidônicos/biossíntese , Moduladores de Receptores de Canabinoides/biossíntese , Canabinoides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Imunofluorescência , Glicerídeos/biossíntese , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Prófase Meiótica I/efeitos dos fármacos , Camundongos , Alcamidas Poli-Insaturadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Espermatogênese/efeitos dos fármacos , Espermatogônias/citologia , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
9.
Anal Bioanal Chem ; 399(8): 2771-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21249341

RESUMO

Fourier transform infrared spectroscopy in attenuated total reflection can be used to discriminate the necrotic from the apoptotic cell death in a tumoral T cell line irradiated by a UV source able to induce both apoptosis and necrosis. Using Jurkat cells as the model system, significant spectral differences in the irradiated cells vs. time were observed in the lipid-proteins ratio absorbance band at 1,397 cm(-1) and in lactic acid IR band at 1,122 cm(-1); these spectral features are inversely correlated with the percentage of apoptotic cells assessed by flow cytometry. From the analysis of second derivatives in the IR spectral region between 1,800 and 900 cm(-1), we have detected two significant spectral changes: the first centered at 1,621 cm(-1) by analyzing the components of the amide I band and the second centered at 1,069 cm(-1) due to C-O stretching vibration of the DNA backbone sensitive to the dehydrated state of DNA; these identified differences in the intracellular biomolecules have been allowed to monitor the necrotic process. The variations in the spectral data set have been identified by the Kruskal-Wallis test and confirmed by the hierarchical cluster analysis.


Assuntos
Apoptose , Neoplasias/fisiopatologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Humanos , Células Jurkat
10.
Life (Basel) ; 11(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34440480

RESUMO

Testicular germ cell tumors (TGCTs) are the most common tumors in adolescent and young men. Recently, genome-wide studies have made it possible to progress in understanding the molecular mechanisms underlying the development of tumors. It is becoming increasingly clear that aberrant regulation of RNA metabolism can drive tumorigenesis and influence chemotherapeutic response. Notably, the expression of non-coding RNAs as well as specific splice variants is deeply deregulated in human cancers. Since these cancer-related RNA species are considered promising diagnostic, prognostic and therapeutic targets, understanding their function in cancer development is becoming a major challenge. Here, we summarize how the different expression of RNA species repertoire, including non-coding RNAs and protein-coding splicing variants, impacts on TGCTs' onset and progression and sustains therapeutic resistance. Finally, the role of transcription-associated R-loop misregulation in the maintenance of genomic stability in TGCTs is also discussed.

11.
Cancers (Basel) ; 13(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668653

RESUMO

Despite germ cell tumors (GCTs) responding to cisplatin-based chemotherapy at a high rate, a subset of patients does not respond to treatment and have significantly worse prognosis. The biological mechanisms underlying the resistance remain unknown. In this study, by using two TGCT cell lines that have acquired cisplatin resistance after chronic exposure to the drug, we identified some key proteins and mechanisms of acquired resistance. We show that cisplatin-resistant cell lines had a non-homologous end-joining (NHEJ)-less phenotype. This correlated with a reduced basal expression of TP53-binding protein 1 (53BP1) and DNA-dependent protein kinase (DNA-PKcs) proteins and reduced formation of 53BP1 foci after cisplatin treatment. Consistent with these observations, modulation of 53BP1 protein expression altered the cell line's resistance to cisplatin, and inhibition of DNA-PKcs activity antagonized cisplatin cytotoxicity. Dampening of NHEJ was accompanied by a functional increase in the repair of DNA double-strand breaks (DSBs) by the homologous recombination repair pathway. As a result, cisplatin-resistant cells were more resistant to PARP inhibitor (PARPi) monotherapy. Moreover, when PARPi was given in combination with cisplatin, it exerted an additive/synergistic effect, and reduced the cisplatin dose for cytotoxicity. These results suggest that treatment of cisplatin-refractory patients may benefit from low-dose cisplatin therapy combined with PARPi.

12.
J Funct Morphol Kinesiol ; 6(2)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072692

RESUMO

Aerobic exercise (AE) is known to produce beneficial effects on brain health by improving plasticity, connectivity, and cognitive functions, but the underlying molecular mechanisms are still limited. Neurexins (Nrxns) are a family of presynaptic cell adhesion molecules that are important in synapsis formation and maturation. In vertebrates, three-neurexin genes (NRXN1, NRXN2, and NRXN3) have been identified, each encoding for α and ß neurexins, from two independent promoters. Moreover, each Nrxns gene (1-3) has several alternative exons and produces many splice variants that bind to a large variety of postsynaptic ligands, playing a role in trans-synaptic specification, strength, and plasticity. In this study, we investigated the impact of a continuous progressive (CP) AE program on alternative splicing (AS) of Nrxns on two brain regions: frontal cortex (FC) and hippocampus. We showed that exercise promoted Nrxns1-3 AS at splice site 4 (SS4) both in α and ß isoforms, inducing a switch from exon-excluded isoforms (SS4-) to exon-included isoforms (SS4+) in FC but not in hippocampus. Additionally, we showed that the same AE program enhanced the expression level of other genes correlated with synaptic function and plasticity only in FC. Altogether, our findings demonstrated the positive effect of CP AE on FC in inducing molecular changes underlying synaptic plasticity and suggested that FC is possibly a more sensitive structure than hippocampus to show molecular changes.

13.
Cell Death Discov ; 6(1): 111, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33298840

RESUMO

In the search of small molecules that can target MDM2/p53 pathway in testicular germ cell tumors (TGCTs), we identified sempervirine (2,3,4,13-tetrahydro-1H-benz[g]indolo[2,3-a]quinolizin-6-ium), an alkaloid of Gelsemium sempervirens, that has been previously proposed as an inhibitor of MDM2 that targets p53-wildtype (wt) tumor cells. We found that sempervirine not only affects cell growth of p53-wt cancer cells, but it is also active in p53-mutated and p53-null cells by triggering p53-dependent and independent pathways without affecting non-transformed cells. To understand which mechanism/s could be activated both in p53-wt and -null cells, we found that sempervirine induced nucleolar remodeling and nucleolar stress by reducing protein stability of RPA194, the catalytic subunit of RNA polymerase I, that led to rRNA synthesis inhibition and to MDM2 block. As shown for other cancer cell models, MDM2 inhibition by nucleolar stress downregulated E2F1 protein levels both in p53-wt and p53-null TGCT cells with the concomitant upregulation of unphosphorylated pRb. Finally, we show that sempervirine is able to enter the nucleus and accumulates within the nucleolus where it binds rRNA without causing DNA damage. Our results identify semperivirine as a novel rRNA synthesis inhibitor and indicate this drug as a non-genotoxic anticancer small molecule.

14.
Dev Biol ; 313(2): 725-38, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18089289

RESUMO

Nanos gene encodes for zinc-finger protein with putative RNA-binding activity which shows an evolutionary conserved function in germ cell development. In the mouse, three Nanos homologs have been identified: Nanos1, Nanos2 and Nanos3. The Nanos3 ortholog is expressed in both male and female gonads of early embryo and, after birth, it is found only in the testis. Nanos3 targeted disruption results in the complete loss of germ cells in both sexes; however the role of Nanos3 in the testis during the postnatal period has not been explored yet. In this study, we show that, in prepuberal testis, Nanos3 is expressed in undifferentiated spermatogonia and that its up-regulation causes accumulation of cells in the G1 phase, indicating that this protein is able to delay the cell cycle progression of spermatogonial cells. This is in line with the observation that the cell cycle length of the undifferentiated germ cells is longer than in differentiating spermatogonia. We also demonstrate a conserved mechanism of action of Nanos3, involving the interaction with the murine RNA-binding protein Pumilio2 and consisting of a potential translational repressor activity. According to the possible role of Nanos3 in inhibiting spermatogonia cell differentiation, we show that treatment with the differentiating factor all-trans retinoic acid induces a dramatic down-regulation of its expression. These results allow to conclude that, in the prepuberal testis, Nanos3 is important to maintain undifferentiated spermatogonia via the regulation of their cell cycle.


Assuntos
Proteínas de Ligação a RNA/fisiologia , Espermatogônias/fisiologia , Animais , Linhagem Celular , Células Cultivadas , DNA Complementar/genética , Regulação para Baixo/efeitos dos fármacos , Embrião de Mamíferos , Escherichia coli/genética , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Separação Imunomagnética , Hibridização In Situ , Rim/citologia , Masculino , Camundongos , Camundongos Endogâmicos , Fator 3 de Transcrição de Octâmero/metabolismo , Fases de Leitura Aberta , Plasmídeos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismo , Espermatogênese , Espermatogônias/citologia , Testículo/anatomia & histologia , Testículo/citologia , Testículo/embriologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Fatores de Tempo , Transfecção , Tretinoína/farmacologia
15.
Sci Rep ; 9(1): 17034, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745152

RESUMO

The cannabinoid receptor type 2 (CB2) is the peripheral receptor for cannabinoids, involved in the homeostatic control of several physiological functions. Male mitotic germ cells express a high level of CB2, whose activation promotes their differentiation in both in vitro and in vivo experiments, controlling the correct progression of spermatogenesis. However, it remains elusive if CB2 activation in spermatogonia could affect reproductive success in terms of fertility and healthy pregnancy outcomes. In this study, we explored the effects of male CB2 activation on sperm number and quality and its influence on next generation health. We show that exposure of male mice to JWH-133, a selective CB2 agonist, decreased sperm count, impaired placental development and reduced offspring growth. These defects were associated with altered DNA methylation/hydroxymethylation levels at imprinted genes in sperm and conserved in placenta. Our findings reveal that paternal selective activation of CB2 alters the sperm epigenome and compromises offspring growth. This study demonstrates, for the first time, a new role of CB2 signaling in male gametes in causing epigenetic alterations that can be transmitted to the next generation by sperm, highlighting potential risks induced by recreational cannabinoid exposure.


Assuntos
Canabinoides/farmacologia , Cannabis/efeitos adversos , Desenvolvimento Embrionário/efeitos dos fármacos , Placentação/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo , Espermatogênese/efeitos dos fármacos , Animais , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Feminino , Masculino , Camundongos , Placenta/embriologia , Gravidez , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/genética , Contagem de Espermatozoides , Espermatogônias/metabolismo , Espermatozoides/metabolismo
16.
Gene Expr Patterns ; 8(2): 58-70, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18036996

RESUMO

Kit ligand (KL) is a survival factor and a mitogenic stimulus for differentiating spermatogonia. However, it is not known whether KL also plays a role in the differentiative events that lead to meiotic entry of these cells. We performed a wide genome analysis of difference in gene expression induced by treatment with KL of spermatogonia from 7-day-old mice, using gene chips spanning the whole mouse genome. The analysis revealed that the pattern of RNA expression induced by KL is compatible with the qualitative changes of the cell cycle that occur during the subsequent cell divisions in type A and B spermatogonia, i.e. the progressive lengthening of the S phase and the shortening of the G2/M transition. Moreover, KL up-regulates in differentiating spermatogonia the expression of early meiotic genes (for instance: Lhx8, Nek1, Rnf141, Xrcc3, Tpo1, Tbca, Xrcc2, Mesp1, Phf7, Rtel1), whereas it down-regulates typical spermatogonial markers (for instance: Pole, Ptgs2, Zfpm2, Egr2, Egr3, Gsk3b, Hnrpa1, Fst, Ptch2). Since KL modifies the expression of several genes known to be up-regulated or down-regulated in spermatogonia during the transition from the mitotic to the meiotic cell cycle, these results are consistent with a role of the KL/kit interaction in the induction of their meiotic differentiation.


Assuntos
Proteínas Proto-Oncogênicas c-kit/fisiologia , Espermatogônias/fisiologia , Fator de Células-Tronco/fisiologia , Transcrição Gênica , Animais , Ciclo Celular , Diferenciação Celular , Células Cultivadas , DNA Complementar , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , RNA/genética , RNA/isolamento & purificação , RNA Complementar , Espermatogônias/citologia
17.
Radiat Res ; 168(6): 698-705, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18088183

RESUMO

We studied the induction of apoptosis in Jurkat cells by UVB radiation (wavelength 290-320 nm) at a dose of 310 mJ/ cm2. We combined Fourier transform infrared (FTIR) spectroscopy with flow cytometry to determine whether the combination of both techniques could provide new and improved information about cell modifications. To do this, we looked for correspondences and correlations between spectroscopy and flow cytometry data and found three highly probable spectroscopic markers of apoptosis. The behavior of the wave number shift of both the Amide I beta-sheet component and the area of the 1083 cm(-1) band reproduced, with a high correlation, the behavior of the early apoptotic cell population, while the behavior of the Amide I area showed a high correlation with the early plus late apoptotic cell population.


Assuntos
Apoptose/efeitos da radiação , Citometria de Fluxo/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Raios Ultravioleta , Amidas/química , Humanos , Células Jurkat , Metabolismo dos Lipídeos/efeitos da radiação , Ácidos Nucleicos/química , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/metabolismo
18.
Cell Death Dis ; 8(10): e3085, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28981118

RESUMO

Type 2 cannabinoid receptor (CB2R) has been proposed to promote in vitro meiotic entry of postnatal male germ cells and to maintain the temporal progression of spermatogenesis in vivo. However, no information is presently available on the role played by CB2R in male and female fetal gonads. Here we show that in vitro pharmacological stimulation with JWH133, a CB2R agonist, induced activation of the meiotic program in both male and female fetal gonads. Upon stimulation, gonocytes initiated the meiotic program but became arrested at early stages of prophase I, while oocytes showed an increased rate of meiotic entry and progression toward more advanced stage of meiosis. Acceleration of meiosis in oocytes was accompanied by a strong increase in the percentage of γ-H2AX-positive pachytene and diplotene cells, paralleled by an increase of TUNEL-positive cells, suggesting that DNA double-strand breaks were not correctly repaired during meiosis, leading to oocyte apoptosis. Interestingly, in vivo pharmacological stimulation of CB2R in fetal germ cells through JWH133 administration to pregnant females caused a significant reduction of primordial and primary follicles in the ovaries of newborns with a consequent depletion of ovarian reserve and reduced fertility in adult life, while no alterations of spermatogenesis in the testis of the offspring were detected. Altogether our findings highlight a pro-meiotic role of CB2R in male and female germ cells and suggest that the use of cannabis in pregnant female might represent a risk for fertility and reproductive lifespan in female offspring.


Assuntos
Meiose/genética , Folículo Ovariano/efeitos dos fármacos , Receptor CB2 de Canabinoide/genética , Testículo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Canabinoides/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Feminino , Feto , Células Germinativas/efeitos dos fármacos , Células Germinativas/crescimento & desenvolvimento , Gônadas/efeitos dos fármacos , Gônadas/crescimento & desenvolvimento , Histonas/genética , Humanos , Masculino , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/crescimento & desenvolvimento , Reserva Ovariana/efeitos dos fármacos , Reserva Ovariana/genética , Gravidez , Receptor CB2 de Canabinoide/agonistas , Espermatogênese/efeitos dos fármacos , Testículo/crescimento & desenvolvimento
19.
Oncotarget ; 8(35): 57991-58002, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28938532

RESUMO

The Growth Differentiation Factor 11 (GDF11) has been controversially involved in the aging/rejuvenation process. To clarify whether GDF11 is differently expressed during aging, we have evaluated GDF11 levels in skeletal muscles and hippocampi of young and old mice, sedentary or subjected to a 12-weeks triweekly training protocol. The results of real-time PCR and Western blot analyses indicate that skeletal muscles of sedentary old mice express higher levels of GDF11 compared to young animals (p < 0.05). Conversely, in hippocampi no significant differences of GDF11 expression are detected. Analysis of long-term potentiation, a synaptic plasticity phenomenon, reveals that population spikes in response to a tetanic stimulus are significantly higher in sedentary young mice than in old animals (p < 0.01). Training induces a significant improvement of long-term potentiation in both young and old animals (p < 0.05), an increase (p < 0.05) of skeletal muscle GDF11 levels in young mice and a reduction of GDF11 expression in hippocampi of old mice (p < 0.05). Overall, data suggest that GDF11 can be considered an aging biomarker for skeletal muscles. Moreover, physical exercise has a positive impact on long-term potentiation in both young and old mice, while it has variable effects on GDF11 expression depending on age and on the tissue analyzed.

20.
Sci Rep ; 7(1): 3469, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615629

RESUMO

Cytochrome P450-aromatase catalyzes estrogen biosynthesis from C19 steroids. In the testis, Sertoli cells express P450-aromatase and represent the primary source of estrogen during prepuberal age. This study focused on the effect of simulated microgravity (SM) on aromatase expression in primary mouse Sertoli cells. When cultured in Rotary Cell Culture System (RCCS), Sertoli cells, formed multicellular three dimensional spheroids (3D). Biological properties were first analyzed in terms of viability, cell cycle, expression of cytoskeletal components and growth factors in comparison to Sertoli cells cultured in spheroids at unit gravity (G). SM did not affect cell viability and proliferation, nor expression of the main cytoskeleton proteins and of growth factors like Kit Ligand (KL) and glial derived neurotrophic factor (GDNF). On the other hand, SM caused a strong increase in P450 aromatase mRNA and protein expression. Interestingly, P450-aromatase was no more inducible by 8-Br-cAMP. The presence of a functional aromatase was confirmed by enrichment of 17ß-estradiol released in the medium by androgen precursors. We concluded that SM causes a significant upregulation of aromatase gene expression in Sertoli cells, leading to a consequent increase in 17ß-estradiol secretion. High level of 17ß-estradiol in the testis could have potentially adverse effects on male fertility and testicular cancer.


Assuntos
Aromatase/genética , Células de Sertoli/metabolismo , Ausência de Peso , Animais , Aromatase/metabolismo , Biomarcadores , Células Cultivadas , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA