Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Mol Life Sci ; 81(1): 246, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819479

RESUMO

The glycosylphosphatidylinositol (GPI) biosynthetic pathway in the endoplasmic reticulum (ER) is crucial for generating GPI-anchored proteins (GPI-APs), which are translocated to the cell surface and play a vital role in cell signaling and adhesion. This study focuses on two integral components of the GPI pathway, the PIGL and PIGF proteins, and their significance in trophoblast biology. We show that GPI pathway mutations impact on placental development impairing the differentiation of the syncytiotrophoblast (SynT), and especially the SynT-II layer, which is essential for the establishment of the definitive nutrient exchange area within the placental labyrinth. CRISPR/Cas9 knockout of Pigl and Pigf in mouse trophoblast stem cells (mTSCs) confirms the role of these GPI enzymes in syncytiotrophoblast differentiation. Mechanistically, impaired GPI-AP generation induces an excessive unfolded protein response (UPR) in the ER in mTSCs growing in stem cell conditions, akin to what is observed in human preeclampsia. Upon differentiation, the impairment of the GPI pathway hinders the induction of WNT signaling for early SynT-II development. Remarkably, the transcriptomic profile of Pigl- and Pigf-deficient cells separates human patient placental samples into preeclampsia and control groups, suggesting an involvement of Pigl and Pigf in establishing a preeclamptic gene signature. Our study unveils the pivotal role of GPI biosynthesis in early placentation and uncovers a new preeclampsia gene expression profile associated with mutations in the GPI biosynthesis pathway, providing novel molecular insights into placental development with implications for enhanced patient stratification and timely interventions.


Assuntos
Diferenciação Celular , Glicosilfosfatidilinositóis , Placentação , Trofoblastos , Trofoblastos/metabolismo , Trofoblastos/citologia , Feminino , Gravidez , Animais , Humanos , Camundongos , Placentação/genética , Glicosilfosfatidilinositóis/metabolismo , Glicosilfosfatidilinositóis/biossíntese , Placenta/metabolismo , Placenta/citologia , Via de Sinalização Wnt , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Retículo Endoplasmático/metabolismo , Vias Biossintéticas/genética , Resposta a Proteínas não Dobradas , Sistemas CRISPR-Cas
2.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039707

RESUMO

Specified intestinal epithelial cells reprogram and contribute to the regeneration and renewal of the epithelium upon injury. Mutations that deregulate such renewal processes may contribute to tumorigenesis. Using intestinal organoids, we show that concomitant activation of Notch signaling and ablation of p53 induce a highly proliferative and regenerative cell state, which is associated with increased levels of Yap and the histone methyltransferase Mll1. The induced signaling system orchestrates high proliferation, self-renewal, and niche-factor-independent growth, and elevates the trimethylation of histone 3 at lysine 4 (H3K4me3). We demonstrate that Yap and Mll1 are also elevated in patient-derived colorectal cancer (CRC) organoids and control growth and viability. Our data suggest that Notch activation and p53 ablation induce a signaling circuitry involving Yap and the epigenetic regulator Mll1, which locks cells in a proliferative and regenerative state that renders them susceptible for tumorigenesis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Proteína de Leucina Linfoide-Mieloide/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição/fisiologia , Proteína Supressora de Tumor p53/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Mutação , Organoides/metabolismo , Fatores de Transcrição/metabolismo
3.
Life Sci Alliance ; 5(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064075

RESUMO

Differentiation and lineage specification are controlled by cooperation of growth factor signalling. The involvement of epigenetic regulators in lineage specification remains largely elusive. Here, we show that the histone methyltransferase Mll1 prevents intestinal progenitor cells from differentiation, whereas it is also involved in secretory lineage specification of Paneth and goblet cells. Using conditional mutagenesis in mice and intestinal organoids, we demonstrate that loss of Mll1 renders intestinal progenitor cells permissive for Wnt-driven secretory differentiation. However, Mll1-deficient crypt cells fail to segregate Paneth and goblet cell fates. Mll1 deficiency causes Paneth cell-determined crypt progenitors to exhibit goblet cell features by unleashing Mapk signalling, resulting in increased numbers of mixed Paneth/goblet cells. We show that loss of Mll1 abolishes the pro-proliferative effect of Mapk signalling in intestinal progenitor cells and promotes Mapk-induced goblet cell differentiation. Our data uncover Mll1 and its downstream targets Gata4/6 as a regulatory hub of Wnt and Mapk signalling in the control of lineage specification of intestinal secretory Paneth and goblet cells.


Assuntos
Sistema de Sinalização das MAP Quinases/genética , Via de Sinalização Wnt/genética , Animais , Diferenciação Celular/genética , Epigênese Genética/genética , Epigenômica/métodos , Feminino , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Organoides/metabolismo , Celulas de Paneth/citologia , Celulas de Paneth/metabolismo , Células-Tronco/metabolismo , Via de Sinalização Wnt/fisiologia
4.
Nat Commun ; 11(1): 6422, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33349639

RESUMO

Wnt/ß-catenin signaling is crucial for intestinal carcinogenesis and the maintenance of intestinal cancer stem cells. Here we identify the histone methyltransferase Mll1 as a regulator of Wnt-driven intestinal cancer. Mll1 is highly expressed in Lgr5+ stem cells and human colon carcinomas with increased nuclear ß-catenin. High levels of MLL1 are associated with poor survival of colon cancer patients. The genetic ablation of Mll1 in mice prevents Wnt/ß-catenin-driven adenoma formation from Lgr5+ intestinal stem cells. Ablation of Mll1 decreases the self-renewal of human colon cancer spheres and halts tumor growth of xenografts. Mll1 controls the expression of stem cell genes including the Wnt/ß-catenin target gene Lgr5. Upon the loss of Mll1, histone methylation at the stem cell promoters switches from activating H3K4 tri-methylation to repressive H3K27 tri-methylation, indicating that Mll1 sustains stem cell gene expression by antagonizing gene silencing through polycomb repressive complex 2 (PRC2)-mediated H3K27 tri-methylation. Transcriptome profiling of Wnt-mutated intestinal tumor-initiating cells reveals that Mll1 regulates Gata4/6 transcription factors, known to sustain cancer stemness and to control goblet cell differentiation. Our results demonstrate that Mll1 is an essential epigenetic regulator of Wnt/ß-catenin-induced intestinal tumorigenesis and cancer stemness.


Assuntos
Carcinogênese/genética , Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt , Animais , Carcinogênese/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Histonas/metabolismo , Humanos , Intestinos/patologia , Lisina/metabolismo , Metilação , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Complexo Repressor Polycomb 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima/genética , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA