Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(14): e111790, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37211968

RESUMO

The mature mammalian brain connectome emerges during development via the extension and pruning of neuronal connections. Glial cells have been identified as key players in the phagocytic elimination of neuronal synapses and projections. Recently, phosphatidylserine has been identified as neuronal "eat-me" signal that guides elimination of unnecessary input sources, but the associated transduction systems involved in such pruning are yet to be described. Here, we identified Xk-related protein 8 (Xkr8), a phospholipid scramblase, as a key factor for the pruning of axons in the developing mammalian brain. We found that mouse Xkr8 is highly expressed immediately after birth and required for phosphatidylserine exposure in the hippocampus. Mice lacking Xkr8 showed excess excitatory nerve terminals, increased density of cortico-cortical and cortico-spinal projections, aberrant electrophysiological profiles of hippocampal neurons, and global brain hyperconnectivity. These data identify phospholipid scrambling by Xkr8 as a central process in the labeling and discrimination of developing neuronal projections for pruning in the mammalian brain.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas de Transferência de Fosfolipídeos , Animais , Camundongos , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Fosfatidilserinas/metabolismo , Axônios/metabolismo , Plasticidade Neuronal , Mamíferos , Proteínas de Membrana/metabolismo
2.
Nat Methods ; 18(10): 1253-1258, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594033

RESUMO

Multiphoton microscopy has become a powerful tool with which to visualize the morphology and function of neural cells and circuits in the intact mammalian brain. However, tissue scattering, optical aberrations and motion artifacts degrade the imaging performance at depth. Here we describe a minimally invasive intravital imaging methodology based on three-photon excitation, indirect adaptive optics (AO) and active electrocardiogram gating to advance deep-tissue imaging. Our modal-based, sensorless AO approach is robust to low signal-to-noise ratios as commonly encountered in deep scattering tissues such as the mouse brain, and permits AO correction over large axial fields of view. We demonstrate near-diffraction-limited imaging of deep cortical spines and (sub)cortical dendrites up to a depth of 1.4 mm (the edge of the mouse CA1 hippocampus). In addition, we show applications to deep-layer calcium imaging of astrocytes, including fibrous astrocytes that reside in the highly scattering corpus callosum.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neuroimagem/métodos , Animais , Astrócitos/metabolismo , Sinalização do Cálcio , Feminino , Proteínas de Fluorescência Verde , Masculino , Camundongos , Camundongos Transgênicos , Software , Antígenos Thy-1
3.
Brain Behav Immun ; 115: 535-542, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967660

RESUMO

During withdrawal from cocaine, calcium permeable-AMPA receptors (CP-AMPAR) progressively accumulate in nucleus accumbens (NAc) synapses, a phenomenon linked to behavioral sensitization and drug-seeking. Recently, it has been suggested that neuroimmune alterations might promote aberrant changes in synaptic plasticity, thus contributing to substance abuse-related behaviors. Here, we investigated the role of microglia in NAc neuroadaptations after withdrawal from cocaine-induced conditioned place preference (CPP). We depleted microglia using PLX5622-supplemented diet during cocaine withdrawal, and after the place preference test, we measured dendritic spine density and the presence of CP-AMPAR in the NAc shell. Microglia depletion prevented cocaine-induced changes in dendritic spines and CP-AMPAR accumulation. Furthermore, microglia depletion prevented conditioned hyperlocomotion without affecting drug-context associative memory. Microglia displayed fewer number of branches, resulting in a reduced arborization area and microglia control domain at late withdrawal. Our results suggest that microglia are necessary for the synaptic adaptations in NAc synapses during cocaine withdrawal and therefore represent a promising therapeutic target for relapse prevention.


Assuntos
Cocaína , Síndrome de Abstinência a Substâncias , Ratos , Animais , Cocaína/farmacologia , Núcleo Accumbens/metabolismo , Cálcio/metabolismo , Ratos Sprague-Dawley , Microglia/metabolismo , Receptores de AMPA/metabolismo
4.
Cereb Cortex ; 33(21): 10750-10760, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37718159

RESUMO

Complement signaling is thought to serve as an opsonization signal to promote the phagocytosis of synapses by microglia. However, while its role in synaptic remodeling has been demonstrated in the retino-thalamic system, it remains unclear whether complement signaling mediates synaptic pruning in the brain more generally. Here we found that mice lacking the Complement receptor 3, the major microglia complement receptor, failed to show a deficit in either synaptic pruning or axon elimination in the developing mouse cortex. Instead, mice lacking Complement receptor 3 exhibited a deficit in the perinatal elimination of neurons in the cortex, a deficit that is associated with increased cortical thickness and enhanced functional connectivity in these regions in adulthood. These data demonstrate a role for complement in promoting neuronal elimination in the developing cortex.


Assuntos
Microglia , Neurônios , Camundongos , Animais , Encéfalo , Transdução de Sinais , Sinapses/fisiologia , Receptores de Complemento , Plasticidade Neuronal/fisiologia
5.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876745

RESUMO

Predators must frequently balance competing approach and defensive behaviors elicited by a moving and potentially dangerous prey. Several brain circuits supporting predation have recently been localized. However, the mechanisms by which these circuits balance the conflict between approach and defense responses remain unknown. Laboratory mice initially show alternating approach and defense responses toward cockroaches, a natural prey, but with repeated exposure become avid hunters. Here, we used in vivo neural activity recording and cell-type specific manipulations in hunting male mice to identify neurons in the lateral hypothalamus and periaqueductal gray that encode and control predatory approach and defense behaviors. We found a subset of GABAergic neurons in lateral hypothalamus that specifically encoded hunting behaviors and whose stimulation triggered predation but not feeding. This population projects to the periaqueductal gray, and stimulation of these projections promoted predation. Neurons in periaqueductal gray encoded both approach and defensive behaviors but only initially when the mouse showed high levels of fear of the prey. Our findings allow us to propose that GABAergic neurons in lateral hypothalamus facilitate predation in part by suppressing defensive responses to prey encoded in the periaqueductal gray. Our results reveal a neural circuit mechanism for controlling the balance between conflicting approach and defensive behaviors elicited by the same stimulus.


Assuntos
Hipotálamo/fisiologia , Comportamento Predatório , Animais , Neurônios GABAérgicos/fisiologia , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais
6.
Glia ; 70(1): 173-195, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34661306

RESUMO

Microglia cells are active players in regulating synaptic development and plasticity in the brain. However, how they influence the normal functioning of synapses is largely unknown. In this study, we characterized the effects of pharmacological microglia depletion, achieved by administration of PLX5622, on hippocampal CA3-CA1 synapses of adult wild type mice. Following microglial depletion, we observed a reduction of spontaneous and evoked glutamatergic activity associated with a decrease of dendritic spine density. We also observed the appearance of immature synaptic features and higher levels of plasticity. Microglia depleted mice showed a deficit in the acquisition of the Novel Object Recognition task. These events were accompanied by hippocampal astrogliosis, although in the absence ofneuroinflammatory condition. PLX-induced synaptic changes were absent in Cx3cr1-/- mice, highlighting the role of CX3CL1/CX3CR1 axis in microglia control of synaptic functioning. Remarkably, microglia repopulation after PLX5622 withdrawal was associated with the recovery of hippocampal synapses and learning functions. Altogether, these data demonstrate that microglia contribute to normal synaptic functioning in the adult brain and that their removal induces reversible changes in organization and activity of glutamatergic synapses.


Assuntos
Microglia , Neurônios , Animais , Encéfalo , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Hipocampo , Camundongos , Compostos Orgânicos/farmacologia , Sinapses/fisiologia
7.
Nat Rev Neurosci ; 18(11): 658-670, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28931944

RESUMO

The final stage of brain development is associated with the generation and maturation of neuronal synapses. However, the same period is also associated with a peak in synapse elimination - a process known as synaptic pruning - that has been proposed to be crucial for the maturation of remaining synaptic connections. Recent studies have pointed to a key role for glial cells in synaptic pruning in various parts of the nervous system and have identified a set of critical signalling pathways between glia and neurons. At the same time, brain imaging and post-mortem anatomical studies suggest that insufficient or excessive synaptic pruning may underlie several neurodevelopmental disorders, including autism, schizophrenia and epilepsy. Here, we review current data on the cellular, physiological and molecular mechanisms of glial-cell-dependent synaptic pruning and outline their potential contribution to neurodevelopmental disorders.


Assuntos
Encéfalo/fisiologia , Transtornos do Neurodesenvolvimento , Neuroglia/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Encéfalo/citologia , Encéfalo/patologia , Humanos , Vias Neurais/citologia , Vias Neurais/fisiologia , Transtornos do Neurodesenvolvimento/patologia , Neuroglia/patologia , Sinapses/patologia
8.
J Neurosci ; 40(48): 9283-9292, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33115925

RESUMO

The ventromedial hypothalamus is a central node of the mammalian predator defense network. Stimulation of this structure in rodents and primates elicits abrupt defensive responses, including flight, freezing, sympathetic activation, and panic, while inhibition reduces defensive responses to predators. The major efferent target of the ventromedial hypothalamus is the dorsal periaqueductal gray (dPAG), and stimulation of this structure also elicits flight, freezing, and sympathetic activation. However, reversible inhibition experiments suggest that the ventromedial hypothalamus and periaqueductal gray play distinct roles in the control of defensive behavior, with the former proposed to encode an internal state necessary for the motivation of defensive responses, while the latter serves as a motor pattern initiator. Here, we used electrophysiological recordings of single units in behaving male mice exposed to a rat to investigate the encoding of predator fear in the dorsomedial division of the ventromedial hypothalamus (VMHdm) and the dPAG. Distinct correlates of threat intensity and motor responses were found in both structures, suggesting a distributed encoding of sensory and motor features in the medial hypothalamic-brainstem instinctive network.SIGNIFICANCE STATEMENT Although behavioral responses to predatory threat are essential for survival, the underlying neuronal circuits remain undefined. Using single unit in vivo electrophysiological recordings in mice, we have identified neuronal populations in the medial hypothalamus and brainstem that encode defensive responses to a rat predator. We found that both structures encode both sensory as well as motor aspects of the behavior although with different kinetics. Our findings provide a framework for understanding how innate sensory cues are processed to elicit adaptive behavioral responses to threat and will help to identify targets for the pharmacological modulation of related pathologic behaviors.


Assuntos
Medo/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Comportamento Predatório , Núcleo Hipotalâmico Ventromedial/fisiologia , Animais , Sinais (Psicologia) , Eletrodos Implantados , Fenômenos Eletrofisiológicos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Ratos , Sistema Nervoso Simpático/fisiologia
9.
Eur J Neurosci ; 54(6): 6044-6059, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34405470

RESUMO

The cerebral cortex is widely accepted to be involved in the control of cognition and the processing of learned information. However, data suggest that it may also have a role in the regulation of innate responses because rodents, cats or primates with surgical removal of cortical regions show excessive aggression and rage elicited by threatening stimuli. Nevertheless, the imprecision and chronic nature of these lesions leave open the possibility that compensatory processes may underlie some of these phenotypes. In the present study we applied a precise, rapid and reversible inhibition approach to examine the contribution of the cerebral cortex to defensive behaviours elicited by a variety of innately aversive stimuli in laboratory mice. Pharmacological treatment of mice carrying the pharmacogenetic inhibitory receptor hM4D selectively in neocortex, archicortex and related dorsal telencephalon-derived structures resulted in the rapid inhibition of cerebral cortex neural activity. Cortical inhibition was associated with a selective increase in defensive behaviours elicited by an aggressive conspecific, a novel prey and a physically stressful stimulus. These findings are consistent with a role for cortex in the acute inhibition of innate defensive behaviours.


Assuntos
Agressão , Hipocampo , Animais , Gatos , Camundongos
10.
J Neurosci ; 38(8): 1915-1925, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29378860

RESUMO

Arousal from sleep in response to CO2 is a critical protective phenomenon. Dysregulation of CO2-induced arousal contributes to morbidity and mortality from prevalent diseases, such as obstructive sleep apnea and sudden infant death syndrome. Despite the critical nature of this protective reflex, the precise mechanism for CO2-induced arousal is unknown. Because CO2 is a major regulator of breathing, prevailing theories suggest that activation of respiratory chemo- and mechano-sensors is required for CO2-induced arousal. However, populations of neurons that are not involved in the regulation of breathing are also chemosensitive. Among these are serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) that comprise a component of the ascending arousal system. We hypothesized that direct stimulation of these neurons with CO2 could cause arousal from sleep independently of enhancing breathing. Dialysis of CO2-rich acidified solution into DRN, but not medullary raphe responsible for modulating breathing, caused arousal from sleep. Arousal was lost in mice with a genetic absence of 5-HT neurons, and with acute pharmacological or optogenetic inactivation of DRN 5-HT neurons. Here we demonstrate that CO2 can cause arousal from sleep directly, without requiring enhancement of breathing, and that chemosensitive 5-HT neurons in the DRN critically mediate this arousal. Better understanding mechanisms underlying this protective reflex may lead to interventions to reduce disease-associated morbidity and mortality.SIGNIFICANCE STATEMENT Although CO2-induced arousal is critical to a number of diseases, the specific mechanism is not well understood. We previously demonstrated that serotonin (5-HT) neurons are important for CO2-induced arousal, as mice without 5-HT neurons do not arouse to CO2 Many have interpreted this to mean that medullary 5-HT neurons that regulate breathing are important in this arousal mechanism. Here we found that direct application of CO2-rich aCSF to the dorsal raphe nucleus, but not the medullary raphe, causes arousal from sleep, and that this arousal was lost with genetic ablation or acute inhibition of 5-HT neurons. We propose that 5-HT neurons in the dorsal raphe nucleus can be activated directly by CO2 to cause arousal independently of respiratory activation.


Assuntos
Nível de Alerta/efeitos dos fármacos , Nível de Alerta/fisiologia , Dióxido de Carbono/farmacologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Neurônios Serotoninérgicos/efeitos dos fármacos , Animais , Núcleo Dorsal da Rafe/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Neurônios Serotoninérgicos/fisiologia , Sono/efeitos dos fármacos , Sono/fisiologia
11.
Glia ; 67(1): 53-67, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30417584

RESUMO

Deficient neuron-microglia signaling during brain development is associated with abnormal synaptic maturation. However, the precise impact of deficient microglia function on synaptic maturation and the mechanisms involved remain poorly defined. Here we report that mice defective in neuron-to-microglia signaling via the fractalkine receptor (Cx3cr1 KO) show reduced microglial branching and altered motility and develop widespread deficits in glutamatergic neurotransmission. We characterized the functional properties of CA3-CA1 synapses in hippocampal slices from these mice and found that they display altered glutamatergic release probability, maintaining immature properties also at late developmental stages. In particular, CA1 synapses of Cx3cr1 KO show (i) immature AMPA/NMDA ratio across developmental time, displaying a normal NMDA component and a defective AMPA component of EPSC; (ii) defective functional connectivity, as demonstrated by reduced current amplitudes in the input/output curve; and (iii) greater facilitation in the paired pulse ratio (PPR), suggesting decreased release probability. In addition, minimal stimulation experiments revealed that excitatory synapses have normal potency, but an increased number of failures, confirming a deficit in presynaptic release. Consistently, KO mice were characterized by higher number of silent synapses in comparison to WT. The presynaptic deficits were corrected by performing experiments in conditions of high release probability (Ca2+ /Mg2+ ratio 8), where excitatory synapses showed normal synaptic multiplicity, AMPA/NMDA ratio, and proportion of silent synapses. These results establish that neuron-microglia interactions profoundly influence the functional maturation of excitatory presynaptic function.


Assuntos
Ácido Glutâmico/fisiologia , Microglia/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Hipocampo/citologia , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos
12.
Mamm Genome ; 30(11-12): 319-328, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31667540

RESUMO

Genetic factors play a significant role in risk for mood and anxiety disorders. Polymorphisms in genes that regulate the brain monoamine systems, such as catabolic enzymes and transporters, are attractive candidates for being risk factors for emotional disorders given the weight of evidence implicating monoamines involvement in these conditions. Several common genetic variants have been identified in the human serotonin transporter (5-HTT) gene, including a repetitive sequence located in the promoter region of the locus called the serotonin transporter-linked polymorphic region (5-HTT-LPR). This polymorphism has been associated with a number of mental traits in both humans and primates, including depression, neuroticism, and harm avoidance. Some, but not all, studies found a link between the polymorphism and 5-HTT levels, leaving open the question of whether the polymorphism affects risk for mental traits via changes in 5-HTT expression. To investigate the impact of the polymorphism on gene expression, serotonin homeostasis, and behavioral traits, we set out to develop a mouse model of the human 5-HTT-LPR. Here we describe the creation and characterization of a set of mouse lines with single-copy human transgenes carrying the short and long 5-HTT-LPR variants. Although we were not able to detect differences in expression between the short and long variants, we encountered several technical issues concerning the design of our humanized mice that are likely to have influenced our findings. Our study serves as a cautionary note for future studies aimed at studying human transgene regulation in the context of the living mouse.


Assuntos
Polimorfismo Genético , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Animais , Linhagem Celular , Expressão Gênica , Humanos , Camundongos Transgênicos , Transgenes
13.
Brain ; 141(7): 2055-2065, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722793

RESUMO

Human genetic studies are rapidly identifying variants that increase risk for neurodevelopmental disorders. However, it remains unclear how specific mutations impact brain function and contribute to neuropsychiatric risk. Chromosome 16p11.2 deletion is one of the most common copy number variations in autism and related neurodevelopmental disorders. Using resting state functional MRI data from the Simons Variation in Individuals Project (VIP) database, we show that 16p11.2 deletion carriers exhibit impaired prefrontal connectivity, resulting in weaker long-range functional coupling with temporal-parietal regions. These functional changes are associated with socio-cognitive impairments. We also document that a mouse with the same genetic deficiency exhibits similarly diminished prefrontal connectivity, together with thalamo-prefrontal miswiring and reduced long-range functional synchronization. These results reveal a mechanistic link between specific genetic risk for neurodevelopmental disorders and long-range functional coupling, and suggest that deletion in 16p11.2 may lead to impaired socio-cognitive function via dysregulation of prefrontal connectivity.


Assuntos
Transtorno Autístico/genética , Transtornos Cromossômicos/genética , Deficiência Intelectual/genética , Rede Nervosa/fisiologia , Adolescente , Animais , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Criança , Deleção Cromossômica , Transtornos Cromossômicos/fisiopatologia , Cromossomos Humanos Par 16/genética , Cognição/fisiologia , Disfunção Cognitiva/complicações , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Feminino , Humanos , Deficiência Intelectual/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética , Córtex Pré-Frontal/fisiologia , Lobo Temporal/fisiopatologia
14.
Nat Rev Neurosci ; 13(9): 651-8, 2012 09.
Artigo em Inglês | MEDLINE | ID: mdl-22850830

RESUMO

Fear is an emotion that has powerful effects on behaviour and physiology across animal species. It is accepted that the amygdala has a central role in processing fear. However, it is less widely appreciated that distinct amygdala outputs and downstream circuits are involved in different types of fear. Data show that fear of painful stimuli, predators and aggressive members of the same species are processed in independent neural circuits that involve the amygdala and downstream hypothalamic and brainstem circuits. Here, we discuss data supporting multiple fear pathways and the implications of this distributed system for understanding and treating fear.


Assuntos
Encéfalo/fisiologia , Medo , Vias Neurais/fisiologia , Animais , Aprendizagem da Esquiva , Encéfalo/anatomia & histologia , Humanos
15.
Eur J Pediatr ; 176(1): 31-39, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27838776

RESUMO

This study aims (1) to describe the context of drinking among adolescents with acute alcohol intoxication (AAI) by gender, (2) to explore temporal changes in the context of drinking and (3) to analyse the association between the context of drinking and blood alcohol concentration (BAC). A retrospective chart review of 12- to 17-year-old inpatients with AAI (n = 1441) of the years 2000 to 2006 has been conducted in five participating hospitals in Germany. Gender differences in the context of drinking were tested with t test and chi2 test. Differences over time were analysed using logistic regressions. Multivariate linear regression was used to predict BAC. Girls and boys differed in admission time, drinking situation, drinking occasion and admission context. No temporal changes in drinking situation and in admission to hospital from public locations or places were found. Higher BAC coincided with male gender and age. Moreover, BAC was higher among patients admitted to hospital from public places and lower among patients who drank for coping. CONCLUSION: The results suggest gender differences in the context of drinking. The context of drinking needs to be considered in the development and implementation of target group-specific prevention and intervention measures. What is known: • The context of drinking, e.g. when, where, why and with whom is associated with episodic heavy drinking among adolescents. What is new: • Male and female inpatients with acute alcohol intoxication differ with regards to the context of drinking, i.e. in admission time, drinking situation, drinking occasion and admission context. • Being admitted to hospital from public places is associated with higher blood alcohol concentration.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Intoxicação Alcoólica/sangue , Concentração Alcoólica no Sangue , Consumo de Álcool por Menores/estatística & dados numéricos , Adolescente , Consumo de Bebidas Alcoólicas/sangue , Consumo de Bebidas Alcoólicas/epidemiologia , Feminino , Alemanha/epidemiologia , Hospitalização , Humanos , Modelos Logísticos , Masculino , Estudos Retrospectivos , Assunção de Riscos , Distribuição por Sexo , Fatores Sexuais
16.
Learn Mem ; 23(10): 544-55, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27634145

RESUMO

How fear is represented in the brain has generated a lot of research attention, not only because fear increases the chances for survival when appropriately expressed but also because it can lead to anxiety and stress-related disorders when inadequately processed. In this review, we summarize recent progress in the understanding of the neural circuits processing innate fear in rodents. We propose that these circuits are contained within three main functional units in the brain: a detection unit, responsible for gathering sensory information signaling the presence of a threat; an integration unit, responsible for incorporating the various sensory information and recruiting downstream effectors; and an output unit, in charge of initiating appropriate bodily and behavioral responses to the threatful stimulus. In parallel, the experience of innate fear also instructs a learning process leading to the memorization of the fearful event. Interestingly, while the detection, integration, and output units processing acute fear responses to different threats tend to be harbored in distinct brain circuits, memory encoding of these threats seems to rely on a shared learning system.


Assuntos
Encéfalo/fisiologia , Medo/fisiologia , Animais , Humanos , Memória/fisiologia , Atividade Motora/fisiologia , Vias Neurais/fisiologia , Roedores
17.
Eur J Neurosci ; 43(11): 1431-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26991018

RESUMO

The amygdala has been shown to be essential for the processing of acute and learned fear across animal species. However, the downstream neural circuits that mediate these fear responses differ according to the nature of the threat, with separate pathways having been identified for predator, conspecific and physically harmful threats. In particular, the dorsomedial part of the ventromedial hypothalamus (VHMdm) is critical for the expression of defensive responses to predators. Here, we tested the hypothesis that this circuit also participates in predator fear memory by transient pharmacogenetic inhibition of the VMHdm and its downstream effector, the dorsal periaqueductal grey, during predator fear learning in the mouse. Our data demonstrate that neural activity in the VMHdm is required for both the acquisition and recall of predator fear memory, whereas that of its downstream effector, the dorsal periaqueductal grey, is required only for the acute expression of fear. These findings are consistent with a role for the medial hypothalamus in encoding an internal emotional state of fear.


Assuntos
Medo/fisiologia , Aprendizagem/fisiologia , Rememoração Mental/fisiologia , Núcleo Hipotalâmico Ventromedial/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Substância Cinzenta Periaquedutal/fisiologia
18.
Alcohol Alcohol ; 51(1): 47-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26113489

RESUMO

AIMS: Empirical data concerning the long-term psychosocial development of adolescents admitted to inpatient treatment with alcohol intoxication (AIA) are lacking. The aim of this study was to identify the factors that, at the time of admission, predict future substance use, alcohol use disorders (AUD), mental health treatment, delinquency and life satisfaction. METHODS: We identified 1603 cases of AIA treated between 2000 and 2007 in one of five pediatric departments in Germany. These former patients were invited to participate in a telephone interview. Medical records were retrospectively analyzed extracting potential variables predicting long-term outcomes. RESULTS: Interviews were conducted with 277 individuals, 5-13 [mean 8.3 (SD 2.3)] years after treatment, with a response rate of 22.7%; of these, 44.8% were female. Mean age at the interview was 24.4 (SD 2.2) years. Logistic and linear regression models revealed that being male, using illicit substances and truancy or runaway behavior in adolescence predicted binge drinking, alcohol dependence, use of illicit substances and poor general life satisfaction in young adulthood, explaining between 13 and 24% of the variance for the different outcome variables. CONCLUSIONS: This naturalistic study confirms that known risk factors for the development of AUD also apply to AIA. This finding facilitates targeted prevention efforts for those cases of AIA who need more than the standard brief intervention for aftercare.


Assuntos
Intoxicação Alcoólica/epidemiologia , Alcoolismo/epidemiologia , Consumo Excessivo de Bebidas Alcoólicas/epidemiologia , Hospitalização/estatística & dados numéricos , Delinquência Juvenil/estatística & dados numéricos , Serviços de Saúde Mental/estatística & dados numéricos , Satisfação Pessoal , Adolescente , Adulto , Feminino , Alemanha/epidemiologia , Humanos , Modelos Lineares , Modelos Logísticos , Masculino , Fatores de Risco , Fatores Sexuais , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Adulto Jovem
19.
J Neurosci ; 33(20): 8678-88, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23678112

RESUMO

Numerous studies link decreased serotonin metabolites with increased impulsive and aggressive traits. However, although pharmacological depletion of serotonin is associated with increased aggression, interventions aimed at directly decreasing serotonin neuron activity have supported the opposite association. Furthermore, it is not clear if altered serotonin activity during development may contribute to some of the observed associations. Here, we used two pharmacogenetic approaches in transgenic mice to selectively and reversibly reduce the firing of serotonin neurons in behaving animals. Conditional overexpression of the serotonin 1A receptor (Htr1a) in serotonin neurons showed that a chronic reduction in serotonin neuron firing was associated with heightened aggression. Overexpression of Htr1a in adulthood, but not during development, was sufficient to increase aggression. Rapid suppression of serotonin neuron firing by agonist treatment of mice expressing Htr1a exclusively in serotonin neurons also led to increased aggression. These data confirm a role of serotonin activity in setting thresholds for aggressive behavior and support a direct association between low levels of serotonin homeostasis and increased aggression.


Assuntos
Potenciais de Ação/fisiologia , Agressão/fisiologia , Inibição Neural/fisiologia , Núcleos da Rafe/citologia , Neurônios Serotoninérgicos/fisiologia , Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/toxicidade , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Ansiedade/genética , Ansiedade/patologia , Autorradiografia , Distribuição de Qui-Quadrado , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Hipotermia/induzido quimicamente , Isótopos de Iodo/farmacocinética , Locomoção/efeitos dos fármacos , Locomoção/genética , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Técnicas de Patch-Clamp , Piperazinas/farmacocinética , Piridinas/farmacocinética , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Serotoninérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Agonistas do Receptor de Serotonina/toxicidade , Fatores de Tempo , Triptofano Hidroxilase/genética
20.
Neurobiol Dis ; 70: 53-68, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24952363

RESUMO

Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in a neurodevelopmental disorder characterized by early-onset intractable seizures, severe developmental delay, intellectual disability, and Rett's syndrome-like features. Since the physiological functions of CDKL5 still need to be elucidated, in the current study we took advantage of a new Cdkl5 knockout (KO) mouse model in order to shed light on the role of this gene in brain development. We mainly focused on the hippocampal dentate gyrus, a region that largely develops postnatally and plays a key role in learning and memory. Looking at the process of neurogenesis, we found a higher proliferation rate of neural precursors in Cdkl5 KO mice in comparison with wild type mice. However, there was an increase in apoptotic cell death of postmitotic granule neuron precursors, with a reduction in total number of granule cells. Looking at dendritic development, we found that in Cdkl5 KO mice the newly-generated granule cells exhibited a severe dendritic hypotrophy. In parallel, these neurodevelopmental defects were associated with impairment of hippocampus-dependent memory. Looking at the mechanisms whereby CDKL5 exerts its functions, we identified a central role of the AKT/GSK-3ß signaling pathway. Overall our findings highlight a critical role of CDKL5 in the fundamental processes of brain development, namely neuronal precursor proliferation, survival and maturation. This evidence lays the basis for a better understanding of the neurological phenotype in patients carrying mutations in the CDKL5 gene.


Assuntos
Dendritos/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Neurônios/fisiologia , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/fisiologia , Crescimento Celular , Sobrevivência Celular/fisiologia , Células Cultivadas , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/fisiologia , Feminino , Glicogênio Sintase Quinase 3 beta , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Knockout , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA