Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(1): 237-252, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30462295

RESUMO

The balance and the overall concentration of intracellular deoxyribonucleoside triphosphates (dNTPs) are important determinants of faithful DNA replication. Despite the established fact that changes in dNTP pools negatively influence DNA replication fidelity, it is not clear why certain dNTP pool alterations are more mutagenic than others. As intracellular dNTP pools are mainly controlled by ribonucleotide reductase (RNR), and given the limited number of eukaryotic RNR mutations characterized so far, we screened for RNR1 mutations causing mutator phenotypes in Saccharomyces cerevisiae. We identified 24 rnr1 mutant alleles resulting in diverse mutator phenotypes linked in most cases to imbalanced dNTPs. Among the identified rnr1 alleles the strongest mutators presented a dNTP imbalance in which three out of the four dNTPs were elevated (dCTP, dTTP and dGTP), particularly if dGTP levels were highly increased. These rnr1 alleles caused growth defects/lethality in DNA replication fidelity-compromised backgrounds, and caused strong mutator phenotypes even in the presence of functional DNA polymerases and mismatch repair. In summary, this study pinpoints key residues that contribute to allosteric regulation of RNR's overall activity or substrate specificity. We propose a model that distinguishes between different dNTP pool alterations and provides a mechanistic explanation why certain dNTP imbalances are particularly detrimental.


Assuntos
Replicação do DNA/genética , Desoxirribonucleotídeos/genética , Ribonucleotídeo Redutases/genética , Proteínas de Saccharomyces cerevisiae/genética , Alelos , Reparo de Erro de Pareamento de DNA/genética , DNA Polimerase Dirigida por DNA/genética , Homeostase , Mutação/genética , Saccharomyces cerevisiae/genética
2.
J Mol Biol ; : 168772, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222679

RESUMO

The highly conserved Hsp90 chaperones control stability and activity of many essential signaling and regulatory proteins including many protein kinases, E3 ligases and transcription factors. Thereby, Hsp90s couple cellular homeostasis of the proteome to cell fate decisions. High-throughput mass spectrometry revealed 178 and 169 posttranslational modifications (PTMs) for human cytosolic Hsp90α and Hsp90ß, but for only a few of the modifications the physiological consequences are investigated in some detail. In this study, we explored the suitability of the yeast model system for the identification of key regulatory residues in human Hsp90α. Replacement of three tyrosine residues known to be phosphorylated by phosphomimetic glutamate and by non-phosphorylatable phenylalanine individually and in combination influenced yeast growth and the maturation of 7 different Hsp90 clients in distinct ways. Furthermore, wild-type and mutant Hsp90 differed in their ability to stabilize known clients when expressed in HepG2 HSP90AA1-/- cells. The purified mutant proteins differed in their interaction with the cochaperones Aha1, Cdc37, Hop and p23 and in their support of the maturation of glucocorticoid receptor ligand binding domain in vitro. In vivo and in vitro data correspond well to each other confirming that the yeast system is suitable for the identification of key regulatory sites in human Hsp90s. Our findings indicate that even closely related clients are affected differently by the amino acid replacements in the investigated positions, suggesting that PTMs could bias Hsp90's client specificity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA