RESUMO
Small organic molecules have been shown to produce sufficient power densities allowing them to be environmentally friendly renewable fuel sources and an important part of fuel cell research. Affiliated experimental work found propylene glycol, as a source of renewable fuel, produces viable power densities when utilized with an alkaline-acid fuel cell and a Pd(111) catalyst. There is limited theoretical work on propylene glycol's energy reaction pathway. Thus, the first step in understanding how propylene glycol reacts with the Pd(111) slab is understanding its adsorption. In this paper, we present the investigation of adsorption potential energies (APE) of propylene glycol stereoisomers (S)-propane-1,2-diol (1,2PGS), (R)-propane-1,2-diol (1,2PGR), and propane-1,3-diol (1,3PG) on Pd(111). The isomers are systematically scanned through different configurations to analyze the preferred stable orientation and positional motifs. Density functional theory (DFT) is used to optimize the molecular geometries and surface relaxations. The most stable configuration of the 1,2PG stereoisomers resulted in an APE of -0.97 eV. The most stable configuration of the 1,3PG resulted in an APE of -1.19 eV. Both the 1,2PG(S/R) and 1,3PG isomers favor a motif in which at least one hydroxyl oxygen atom interacts with the surface of the Pd(111) catalyst. The 1,2PG carbon backbone prefers to have the center carbon positioned away from the slab, while the 1,3PG prefers to have the center carbon positioned closer to the slab. The most stable 1,3PG differs from other reported 1,3PG and 1,2PG relaxed configurations in that both of the hydroxyl oxygen atoms interact with the Pd(111) surface. These results show more favorable APEs than previously reported calculations. This paper will discuss in detail the differences between the hydroxyl group motifs and their role in affecting adsorption.
Assuntos
Paládio , Propano , Adsorção , Carbono , Oxigênio , Propilenoglicol , EstereoisomerismoRESUMO
TDP-43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP-43 function at physiological levels both in vitro and in vivo Interestingly, we find that mutations within the C-terminal domain of TDP-43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP-43 loss- and gain-of-function effects. TDP-43 gain-of-function effects in these mice reveal a novel category of splicing events controlled by TDP-43, referred to as "skiptic" exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain-of-function mutation in endogenous Tardbp causes an adult-onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain-of-function and skiptic exons in ALS patient-derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP-43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.
Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Éxons/genética , Humanos , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Splicing de RNA/genéticaRESUMO
Scanning tunneling microscopy (STM) data for α-ketoester/1-(1-naphthyl)ethylamine complexes on Pt(111) reveal a tumbling motion that couples two neighboring binding states. The interconversion, resulting in prochiral inversion of the α-ketoester, occurs in single complexes without breaking them apart. This is a surprising observation because the overall motion requires rotation of the α-ketoester away from the surface without branching exclusively into diffusion away from the complex or desorption. The multi-step interconversion is rationalized in terms of sequences of bound states that combine transient H-bond interactions with the chiral molecule and weakened adsorption interactions with the metal. The observation of tumbling in single long-lived complexes is of relevance to self-assembly and directed molecular motion on surfaces, to ligand-controlled surface reactions, and most directly to stereocontrol in asymmetric heterogeneous catalysis.
RESUMO
Confinement has been shown to contribute to the dynamics of small molecules within nanoscale hydrophobic or hydrophilic cavities. Enclosure within a confined space can also influence energy transfer pathways, such as the enhancement of fluorescence over thermal relaxation. In this paper, the effect of confinement on the thermodynamic properties and reaction kinetics of small hydrophobic molecules confined in a soft polymeric template is detailed. A quasi-elastic neutron scattering experiment identified a substantial decrease in translational diffusion of pyrrole after solubilization within a hydrophobic cavity. This decrease in mobility is due to pyrrole's closer packing and increased density under confinement vs the bulk liquid. The decreased mobility and increased density explain the spontaneous polymerization reaction of pyrrole observed within the cavity. The precise characterization of the polymerization kinetics under confinement found that the reaction is independent of pyrrole concentration, consistent with the close packing density. Kinetic data also show that confinement dimensionality finds a thermodynamic expression in the transition state entropy. The dynamics and kinetics experiments reported here offer rare empirical insight into the important influence that cavity geometry places on the reactions they host.
RESUMO
OBJECTIVES: Tracheostomy-related pressure injuries (TRPI) have been demonstrated to occur in approximately 10% of tracheostomy patients. In this study, we present TRPI outcomes after implementation of a standardized tracheostomy care protocol. METHODS: A tracheostomy care protocol was developed by an interdisciplinary quality improvement program and implemented on July 1, 2016. The protocol was designed to minimize factors that contribute to the development of TRPI. Rates of TRPI over the subsequent 20 months were compared to the year before implementation. RESULTS: 9 out of 85 patients (10.6%) developed TRPI in the pre-protocol cohort compared to 0 of 137 (0%) in the post-protocol cohort, which was a statistically significant decrease by Fisher's exact test with a p-value of 0.0001. Pearson's correlation coefficient demonstrated a negative correlation between age and post-operative day of diagnosis (r = -0.641, p = 0.063), indicating that older patients develop TRPI more quickly. CONCLUSIONS: Interdisciplinary peri-operative tracheostomy care protocols can be effective in decreasing rates of TRPI.
Assuntos
Assistência Perioperatória/métodos , Pressão/efeitos adversos , Traqueostomia/efeitos adversos , Traqueostomia/métodos , Úlcera/etiologia , Úlcera/prevenção & controle , Estudos de Coortes , HumanosRESUMO
Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid-protein and protein-protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function. To further investigate the function of ZFP106, we performed an in-depth characterization of Zfp106 deficient mice (Zfp106(-/-)), and we report a novel role for ZFP106 in motor and sensory neuronal maintenance and survival. Zfp106(-/-) mice develop severe motor abnormalities, major deficits in muscle strength and histopathological changes in muscle. Intriguingly, despite being highly expressed throughout the central nervous system, Zfp106(-/-) mice undergo selective motor and sensory neuronal and axonal degeneration specific to the spinal cord and peripheral nervous system. Neurodegeneration does not occur during development of Zfp106(-/-) mice, suggesting that ZFP106 is likely required for the maintenance of mature peripheral motor and sensory neurons. Analysis of embryonic Zfp106(-/-) motor neurons revealed deficits in mitochondrial function, with an inhibition of Complex I within the mitochondrial electron transport chain. Our results highlight a vital role for ZFP106 in sensory and motor neuron maintenance and reveal a novel player in mitochondrial dysfunction and neurodegeneration.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/genética , Células Receptoras Sensoriais/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Neurônios Motores/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Células Receptoras Sensoriais/fisiologiaRESUMO
The modification of heterogeneous catalysts through the chemisorption of chiral molecules is a method to create catalytic sites for enantioselective surface reactions. The chiral molecule is called a chiral modifier by analogy to the terms chiral auxiliary or chiral ligand used in homogeneous asymmetric catalysis. While there has been progress in understanding how chirality transfer occurs, the intrinsic difficulties in determining enantioselective reaction mechanisms are compounded by the multisite nature of heterogeneous catalysts and by the challenges facing stereospecific surface analysis. However, molecular descriptions have now emerged that are sufficiently detailed to herald rapid advances in the area. The driving force for the development of heterogeneous enantioselective catalysts stems, at the minimum, from the practical advantages they might offer over their homogeneous counterparts in terms of process scalability and catalyst reusability. The broader rewards from their study lie in the insights gained on factors controlling selectivity in heterogeneous catalysis. Reactions on surfaces to produce a desired enantiomer in high excess are particularly challenging since at room temperature, barrier differences as low as â¼2 kcal/mol between pathways to R and S products are sufficient to yield an enantiomeric ratio (er) of 90:10. Such small energy differences are comparable to weak interadsorbate interaction energies and are much smaller than chemisorption or even most physisorption energies. In this Account, we describe combined experimental and theoretical surface studies of individual diastereomeric complexes formed between chiral modifiers and prochiral reactants on the Pt(111) surface. Our work is inspired by the catalysis literature on the enantioselective hydrogenation of activated ketones on cinchona-modified Pt catalysts. Using scanning tunneling microscopy (STM) measurements and density functional theory (DFT) calculations, we probe the structures and relative abundances of non-covalently bonded complexes formed between three representative prochiral molecules and (R)-(+)-1-(1-naphthyl)ethylamine ((R)-NEA). All three prochiral molecules, 2,2,2-trifluoroacetophenone (TFAP), ketopantolactone (KPL), and methyl 3,3,3-trifluoropyruvate (MTFP), are found to form multiple complexation configurations around the ethylamine group of chemisorbed (R)-NEA. The principal intermolecular interaction is NH···O H-bonding. In each case, submolecularly resolved STM images permit the determination of the prochiral ratio (pr), pro-R to pro-S, proper to specific locations around the ethylamine group. The overall pr observed in experiments on large ensembles of KPL-(R)-NEA complexes is close to the er reported in the literature for the hydrogenation of KPL to pantolactone on (R)-NEA-modified Pt catalysts at 1 bar H2. The results of independent DFT and STM studies are merged to determine the geometries of the most abundant complexation configurations. The structures reveal the hierarchy of chemisorption and sometimes multiple H-bonding interactions operating in complexes. In particular, privileged complexes formed by KPL and MTFP reveal the participation of secondary CH···O interactions in stereocontrol. State-specific STM measurements on individual TFAP-(R)-NEA complexes show that complexation states interconvert through processes including prochiral inversion. The state-specific information on structure, prochirality, dynamics, and energy barriers delivered by the combination of DFT and STM provides insight on how to design better chiral modifiers.
RESUMO
Telomere dysfunction is implicated in the generation of large-scale genomic rearrangements that drive progression to malignancy. In this study we used high-resolution single telomere length analysis (STELA) to examine the potential role of telomere dysfunction in 80 myelodysplastic syndrome (MDS) and 95 de novo acute myeloid leukaemia (AML) patients. Despite the MDS cohort being older, they had significantly longer telomeres than the AML cohort (P < 0·0001) where telomere length was also significantly shorter in younger AML patients (age <60 years) (P = 0·02) and in FLT3 internal tandem duplication-mutated AML patients (P = 0·03). Using a previously determined telomere length threshold for telomere dysfunction (3·81 kb) did not provide prognostic resolution in AML [Hazard ratio (HR) = 0·68, P = 0·2]. In contrast, the same length threshold was highly prognostic for overall survival in the MDS cohort (HR = 5·0, P < 0·0001). Furthermore, this telomere length threshold was an independent parameter in multivariate analysis when adjusted for age, gender, cytogenetic risk group, number of cytopenias and International Prognostic Scoring System (IPSS) score (HR = 2·27, P < 0·0001). Therefore, telomere length should be assessed in a larger prospective study to confirm its prognostic role in MDS with a view to integrating this variable into a revised IPSS.
Assuntos
Leucemia Mieloide Aguda/patologia , Síndromes Mielodisplásicas/patologia , Telômero/patologia , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Intervalo Livre de Doença , Feminino , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/enzimologia , Síndromes Mielodisplásicas/mortalidade , Prognóstico , Estudos Prospectivos , Fatores de Risco , Telomerase/metabolismo , Adulto JovemRESUMO
OBJECTIVE: This study reports on a novel brain pathology in young patients with frontal lobe epilepsy (FLE) that is distinct from focal cortical dysplasia (FCD). METHODS: Surgical specimens from 20 young adults with FLE (mean age, 30 years) were investigated with histological/immunohistochemical markers for cortical laminar architecture, mammalian target of (mTOR) pathway activation and inhibition, cellular autophagy, and synaptic vesicle-mediated trafficking as well as proteomics analysis. Findings were correlated with pre-/postoperative clinical, imaging, and electrophysiological data. RESULTS: Excessive lipofuscin accumulation was observed in abnormal dysmorphic neurones in 6 cases, but not in seven FCD type IIB and 7 pathology-negative cases, despite similar age and seizure histories. Abnormal dysmorphic neurones on proteomics analysis were comparable to aged human brains. The mTOR pathway was activated, as in cases with dysplasia, but the immunoreactivities of nucleoporin p62, DEP-domain containing protein 5, clathrin, and dynamin-1 were different between groups, suggesting that enhanced autophagy flux and abnormal synaptic vesicle trafficking contribute to early lipofuscin aggregation in these cases, compared to suppression of autophagy in cases with typical dysplasia. Cases with abnormal neuronal lipofuscin showed subtle magnetic resonance imaging cortical abnormalities that localized with seizure onset zone and were more likely to have a family history. INTERPRETATION: We propose that excess neuronal lipofuscin accumulation in young patients with FLE represents a novel pathology underlying this epilepsy; the early accumulation of lipofuscin may be disease driven, secondary to as-yet unidentified drivers accelerating autophagic pathways, which may underpin the neuronal dysfunction in this condition. Ann Neurol 2016;80:882-895.
Assuntos
Encéfalo/metabolismo , Epilepsia do Lobo Frontal/metabolismo , Lipofuscina/metabolismo , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteômica , Serina-Treonina Quinases TOR/metabolismoRESUMO
BACKGROUND: Brain homeostasis deteriorates in sepsis, giving rise to a mostly reversible sepsis-associated encephalopathy (SAE). Some survivors experience chronic cognitive dysfunction thought to be caused by permanent brain injury. In this study, we investigated neuroaxonal pathology in sepsis. METHODS: We conducted a longitudinal, prospective translational study involving (1) experimental sepsis in an animal model; (2) postmortem studies of brain from patients with sepsis; and (3) a prospective, longitudinal human sepsis cohort study at university laboratory and intensive care units (ICUs). Thirteen ICU patients with septic shock, five ICU patients who died as a result of sepsis, fourteen fluid-resuscitated Wistar rats with fecal peritonitis, eleven sham-operated rats, and three human and four rat control subjects were included. Immunohistologic and protein biomarker analysis were performed on rat brain tissue at baseline and 24, 48, and 72 h after sepsis induction and in sham-treated rats. Immunohistochemistry was performed on human brain tissue from sepsis nonsurvivors and in control patients without sepsis. The clinical diagnostics of SAE comprised longitudinal clinical data collection and magnetic resonance imaging (MRI) and electroencephalographic assessments. Statistical analyses were performed using SAS software (version 9.4; SAS Institute, Inc., Cary, NC, USA). Because of non-Gaussian distribution, the nonparametric Wilcoxon test general linear models and the Spearman correlation coefficient were used. RESULTS: In postmortem rat and human brain samples, neurofilament phosphoform, ß-amyloid precursor protein, ß-tubulin, and H&E stains distinguished scattered ischemic lesions from diffuse neuroaxonal injury in septic animals, which were absent in controls. These two patterns of neuroaxonal damage were consistently found in septic but not control human postmortem brains. In experimental sepsis, the time from sepsis onset correlated with tissue neurofilament levels (R = 0.53, p = 0.045) but not glial fibrillary acidic protein. Of 13 patients with sepsis who had clinical features of SAE, MRI detected diffuse axonal injury in 9 and ischemia in 3 patients. CONCLUSIONS: Ischemic and diffuse neuroaxonal injury to the brain in experimental sepsis, human postmortem brains, and in vivo MRI suggest these two distinct lesion types to be relevant. Future studies should be focused on body fluid biomarkers to detect and monitor brain injury in sepsis. The relationship of neurofilament levels with time from sepsis onset may be of prognostic value. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02442986 . Registered on May 13, 2015.
Assuntos
Terminações Pré-Sinápticas/patologia , Encefalopatia Associada a Sepse/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , Precursor de Proteína beta-Amiloide/análise , Animais , Autopsia/métodos , Biomarcadores/análise , Encéfalo/anormalidades , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia/métodos , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/microbiologia , Prognóstico , Estudos Prospectivos , Ratos , Ratos Wistar/anatomia & histologia , Tubulina (Proteína)/análiseRESUMO
Genetic and epigenetic alterations contribute to the biological and clinical characteristics of myelodysplastic syndromes (MDS), but a role for socioeconomic environment remains unclear. Here, socioeconomic status (SES) for 283 MDS patients was estimated using the Scottish Index of Multiple Deprivation tool. Indices were assigned to quintile categorical indicators ranked from SES1 (lowest) to SES5 (highest). Clinicopathological features and outcomes between SES quintiles containing 15%, 20%, 19%, 30% and 16% of patients were compared. Prognostic scores identified lower-risk MDS in 82% of patients, with higher-risk disease in 18%. SES quintiles did not associate with age, gender, cytogenetics, International Prognostic scores or, in sub-analysis (n = 95), driver mutations. The odds ratio of a diagnosis of refractory anaemia was greater than other MDS sub-types in SES5 (OR 1·9, P = 0·024). Most patients (91%) exclusively received supportive care. SES did not associate with leukaemic transformation or cause of death. Cox regression models confirmed male gender (P < 0·05), disease-risk (P < 0·0001) and age (P < 0·01) as independent predictors of leukaemia-free survival, with leukaemic transformation an additional determinant of overall survival (P = 0·07). Thus, if access to healthcare is equitable, SES does not determine disease biology or survival in MDS patients receiving supportive treatment; additional studies are required to determine whether outcomes following disease-modifying therapies are influenced by SES.
Assuntos
Síndromes Mielodisplásicas/mortalidade , Classe Social , Adulto , Idoso , Idoso de 80 Anos ou mais , Anemia Refratária , Causas de Morte , Transformação Celular Neoplásica , Feminino , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/economia , Fenótipo , Prognóstico , Fatores de Risco , Resultado do TratamentoRESUMO
A robust, efficient, dynamic, and automated nudged elastic band (AutoNEB) algorithm to effectively locate transition states is presented. The strength of the algorithm is its ability to use fewer resources than the nudged elastic band (NEB) method by focusing first on converging a rough path before improving upon the resolution around the transition state. To demonstrate its efficiency, it has been benchmarked using a simple diffusion problem and a dehydrogenation reaction. In both cases, the total number of force evaluations used by the AutoNEB method is significantly less than the NEB method. Furthermore, it is shown that for a fast and robust relaxation to the transition state, a climbing image elastic band method where the full spring force, rather than only the component parallel to the local tangent to the path, is preferred especially for pathways through energy landscapes with multiple local minima. The resulting corner cutting does not affect the accuracy of the transition state as long as this is located with the climbing image method. Finally, a number of pitfalls often encountered while locating the true transition state of a reaction are discussed in terms of systematically exploring the multidimensional energy landscape of a given process.
RESUMO
The adsorption, diffusion, and dissociation of pyridine, C5H5N, on Pt(111) are investigated with van der Waals-corrected density functional theory. An elaborate search for local minima in the adsorption potential energy landscape reveals that the intact pyridine adsorbs with the aromatic ring parallel to the surface. Piecewise interconnections of the local minima in the energy landscape reveal that the most favourable diffusion path for pyridine has a barrier of 0.53 eV. In the preferred path, the pyridine remains parallel to the surface while performing small single rotational steps with a carbon-carbon double bond hinged above a single Pt atom. The origin of the diffusion pathway is discussed in terms of the C2-Pt π-bond being stronger than the corresponding CN-Pt π-bond. The energy barrier and reaction enthalpy for dehydrogenation of adsorbed pyridine into an adsorbed, upright bound α-pyridyl species are calculated to 0.71 eV and 0.18 eV, respectively (both zero-point energy corrected). The calculations are used to rationalize previous experimental observations from the literature for pyridine on Pt(111).
RESUMO
Myelodysplastic syndromes (MDS) are a heterogeneous group of chronic hematological malignancies characterized by dysplasia, ineffective hematopoiesis and a variable risk of progression to acute myeloid leukemia. Sequencing of MDS genomes has identified mutations in genes implicated in RNA splicing, DNA modification, chromatin regulation, and cell signaling. We sequenced 111 genes across 738 patients with MDS or closely related neoplasms (including chronic myelomonocytic leukemia and MDS-myeloproliferative neoplasms) to explore the role of acquired mutations in MDS biology and clinical phenotype. Seventy-eight percent of patients had 1 or more oncogenic mutations. We identify complex patterns of pairwise association between genes, indicative of epistatic interactions involving components of the spliceosome machinery and epigenetic modifiers. Coupled with inferences on subclonal mutations, these data suggest a hypothesis of genetic "predestination," in which early driver mutations, typically affecting genes involved in RNA splicing, dictate future trajectories of disease evolution with distinct clinical phenotypes. Driver mutations had equivalent prognostic significance, whether clonal or subclonal, and leukemia-free survival deteriorated steadily as numbers of driver mutations increased. Thus, analysis of oncogenic mutations in large, well-characterized cohorts of patients illustrates the interconnections between the cancer genome and disease biology, with considerable potential for clinical application.
Assuntos
Mutação , Síndromes Mielodisplásicas/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Progressão da Doença , Epistasia Genética , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mielomonocítica Crônica/genética , Masculino , Pessoa de Meia-Idade , Doenças Mieloproliferativas-Mielodisplásicas/genética , Oncogenes , Prognóstico , Splicing de RNA/genética , Spliceossomos/genéticaRESUMO
Extracellular matrix proteins adsorbed onto mineral surfaces exist in a unique environment where the structure and dynamics of the protein can be altered profoundly. To further elucidate how the mineral surface impacts molecular properties, we perform a comparative study of the dynamics of nonpolar side chains within the mineral-recognition domain of the biomineralization protein salivary statherin adsorbed onto its native hydroxyapatite (HAP) mineral surface versus the dynamics displayed by the native protein in the hydrated solid state. Specifically, the dynamics of phenylalanine side chains (viz., F7 and F14) located in the surface-adsorbed 15-amino acid HAP-recognition fragment (SN15: DpSpSEEKFLRRIGRFG) are studied using deuterium magic angle spinning ((2)H MAS) line shape and spin-lattice relaxation measurements. (2)H NMR MAS spectra and T1 relaxation times obtained from the deuterated phenylalanine side chains in free and HAP-adsorbed SN15 are fitted to models where the side chains are assumed to exchange between rotameric states and where the exchange rates and a priori rotameric state populations are varied iteratively. In condensed proteins, phenylalanine side-chain dynamics are dominated by 180° flips of the phenyl ring, i.e., the "π flip". However, for both F7 and F14, the number of exchanging side-chain rotameric states increases in the HAP-bound complex relative to the unbound solid sample, indicating that increased dynamic freedom accompanies introduction of the protein into the biofilm state. The observed rotameric exchange dynamics in the HAP-bound complex are on the order of 5-6 × 10(6) s(-1), as determined from the deuterium MAS line shapes. The dynamics in the HAP-bound complex are also shown to have some solution-like behavioral characteristics, with some interesting deviations from rotameric library statistics.
Assuntos
Durapatita/química , Peptídeos/química , Fenilalanina/química , Proteínas e Peptídeos Salivares/química , Adsorção , Algoritmos , Biofilmes , Simulação por Computador , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Movimento (Física) , Estrutura Secundária de Proteína , Saliva/metabolismo , Soluções , Propriedades de SuperfícieRESUMO
The ability to find optimal molecular structures with desired properties is a popular challenge, with applications in areas such as drug discovery. Genetic algorithms are a common approach to global minima molecular searches due to their ability to search large regions of the energy landscape and decrease computational time via parallelization. In order to decrease the amount of unstable intermediate structures being produced and increase the overall efficiency of an evolutionary algorithm, clustering was introduced in multiple instances. However, there is little literature detailing the effects of differentiating the selection frequencies between clusters. In order to find a balance between exploration and exploitation in our genetic algorithm, we propose a system of clustering the starting population and choosing clusters for an evolutionary algorithm run via a dynamic probability that is dependent on the fitness of molecules generated by each cluster. We define four parameters, MFavOvrAll-A, MFavClus-B, NoNewFavClus-C, and Select-D, that correspond to a reward for producing the best structure overall, a reward for producing the best structure in its own cluster, a penalty for not producing the best structure, and a penalty based on the selection ratio of the cluster, respectively. A reward increases the probability of a cluster's future selection, while a penalty decreases it. In order to optimize these four parameters, we used a Gaussian distribution to approximate the evolutionary algorithm performance of each cluster and performed a grid search for different parameter combinations. Results show parameter MFavOvrAll-A (rewarding clusters for producing the best structure overall) and parameter Select-D (appearance penalty) have a significantly larger effect than parameters MFavClus-B and NoNewFavClus-C. In order to produce the most successful models, a balance between MFavOvrAll-A and Select-D must be made that reflects the exploitation vs exploration trade-off often seen in reinforcement learning algorithms. Results show that our reinforcement-learning-based method for selecting clusters outperforms an unclustered evolutionary algorithm for quinoline-like structure searches.
RESUMO
Deep neck space infections (DNSI) are severe infections within the layers of neck fascia that are known to be associated with underlying immunocompromised states. Although uremia associated with kidney disease is known to cause immune system dysfunction, DNSI in patients with kidney disease has been poorly studied. This study investigated the prevalence of DNSI and the associated risk of mortality within the United States end-stage renal disease (ESRD) population, using a retrospective cohort study design and the United States Renal Data System database of patients (ages 18-100) who initiated dialysis therapy between 2005 and 2019. International Classification of Disease-9 and -10 codes were used to identify the diagnosis of DNSI and comorbid conditions. Of the 705,891 included patients, 2.2% had a diagnosis of DNSI. Variables associated with increased risk of DNSI were female sex, black compared to white race, catheter, or graft compared to arteriovenous fistula (AVF) access, autoimmune disease, chronic tonsillitis, diagnoses in the Charlson Comorbidity Index (CCI), tobacco use, and alcohol dependence. DNSI diagnosis was an independent risk factor for mortality, which was also associated with other comorbidity factors such as older age, catheter or graft compared to AVF access, comorbidities in the CCI, tobacco use, and alcohol dependence. Because of the increased mortality risk of DSNI in the ESRD population, health professionals should encourage good oral hygiene practices and smoking cessation, and they should closely monitor these patients to reduce poor outcomes.
Assuntos
Alcoolismo , Falência Renal Crônica , Humanos , Feminino , Estados Unidos/epidemiologia , Masculino , Estudos Retrospectivos , Prevalência , Falência Renal Crônica/complicações , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/terapia , Diálise RenalRESUMO
OBJECTIVE: The objective of this study was to understand applicant perspectives on in-person and virtual otolaryngology residency interviews. STUDY DESIGN: Survey study. SETTING: Otolaryngology residency applicants who were interviewed during 2022-2023. METHODS: Survey sent to all otolaryngology residency applicants who interviewed during the 2022-2023 interview season. RESULTS: A total of 499 applicants were surveyed with 150 responses (30%). Approximately 48.3% of respondents were offered an in-person interview with 78.9% accepting the offer. Of those who did not accept, reasons included not wanting to travel (21.1%) and time conflicts (15.5%). When comparing virtual versus in-person interviews, those who attended virtual interviews were more likely to disagree that they connected with residents (P = .02) and that they had an improved perspective of the program (P = .002). The majority of applicants agreed that virtual interviews are more inclusive and equitable than in-person interviews (70.4%). When asked which interview style applicants would prefer, 63.1% of applicants preferred an in-person interview when compared to virtual with a second look option (29.5%) and virtual (7.4%). Respondents who self-identified as being underrepresented in medicine were less likely to choose in-person as their preferred interview format (P = .01) and were more likely to decline an in-person interview offer due to monetary limitations (P = .04). CONCLUSIONS: Applicants indicated dissatisfaction with connecting with residents and improving their perspective of the program when in a virtual setting. Applicants felt that virtual interviews were more equitable, but that if the barriers to equity were lessened then they would prefer in-person interviews.
Assuntos
Internato e Residência , Medicina , Otolaringologia , Humanos , Emoções , Cirurgia de Second-Look , Inquéritos e QuestionáriosRESUMO
In a previous study, we identified somatic mutations of SF3B1, a gene encoding a core component of RNA splicing machinery, in patients with myelodysplastic syndrome (MDS). Here, we define the clinical significance of these mutations in MDS and myelodysplastic/myeloproliferative neoplasms (MDS/MPN). The coding exons of SF3B1 were screened using massively parallel pyrosequencing in patients with MDS, MDS/MPN, or acute myeloid leukemia (AML) evolving from MDS. Somatic mutations of SF3B1 were found in 150 of 533 (28.1%) patients with MDS, 16 of 83 (19.3%) with MDS/MPN, and 2 of 38 (5.3%) with AML. There was a significant association of SF3B1 mutations with the presence of ring sideroblasts (P < .001) and of mutant allele burden with their proportion (P = .002). The mutant gene had a positive predictive value for ring sideroblasts of 97.7% (95% confidence interval, 93.5%-99.5%). In multivariate analysis including established risk factors, SF3B1 mutations were found to be independently associated with better overall survival (hazard ratio = 0.15, P = .025) and lower risk of evolution into AML (hazard ratio = 0.33, P = .049). The close association between SF3B1 mutations and disease phenotype with ring sideroblasts across MDS and MDS/MPN is consistent with a causal relationship. Furthermore, SF3B1 mutations are independent predictors of favorable clinical outcome, and their incorporation into stratification systems might improve risk assessment in MDS.