Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 61(25): 9523-9532, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35700273

RESUMO

We present a comprehensive study on the diphosphanation of iso(thio)cyanates by unsymmetrical diphosphanes. The reactions involving unsymmetrical diphosphanes and phenyl isocyanate or phenyl thioisocyanate gave rise to phosphanyl, phosphoryl, and thiophosphoryl derivatives of amides, imines, and iminoamides. The structures of the diphosphanation products were confirmed through NMR spectroscopy, IR spectroscopy, and single-crystal X-ray diffraction. We showed that unsymmetrical diphosphanes could be used as building blocks to synthesize phosphorus analogues of important classes of organic molecules. The described transformations provided a new methodology for the synthesis of organophosphorus compounds bearing phosphanyl, phosphoryl, or thiophosphoryl functional groups. Moreover, theoretical studies on diphosphanation reactions explained the influence of the steric and electronic properties of the parent diphosphanes on the structures of the diphosphanation products.

2.
Inorg Chem ; 61(10): 4361-4370, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35220712

RESUMO

Herein, we present the synthesis of the first fully characterized monomeric triphosphinoboranes. The simple reaction of boron tribromide with 3 equiv of bulky lithium phosphide tBu2PLi yielded triphosphinoborane (tBu2P)3B. Triphosphinoboranes with diversified phosphanyl substituents were obtained via a two-step reaction, in which isolable bromodiphosphinoborane (tBu2P)2BBr is first formed and then reacts with 1 equiv of less bulky phosphide R2PLi (R2P = Cy2P, iPr2P, tBuPhP, or Ph2P). By utilizing this method, we obtained a series of triphosphinoboranes with the general formula (tBu2P)2BPR2. On the basis of structural and theoretical studies, two main types of triphosphinoborane structures can be distinguished. In the first type, all three electron lone pairs interact with the formally empty p orbital of the central boron atom, resulting in delocalized π bonding, whereas in the second type, one localized P═B bond and two P-B bonds are observed. The Lewis acidic-basic properties of triphosphinoboranes during the reaction of (tBu2P)2BPiPr2 with H3B·SMe2 were analyzed. The P-B bond-containing compound mentioned above not only formed an adduct with BH3 but also activated the B-H bond of the borane molecule, resulting in the incorporation of the BH2 unit into two phosphorus atoms and migration of a hydride to the boron atom of the parent triphosphinoborane. The structures of the triphosphinoboranes were confirmed by single-crystal X-ray analysis, multinuclear nuclear magnetic resonance spectroscopy, and elemental analysis.

3.
Inorg Chem ; 61(49): 19925-19932, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36453123

RESUMO

Herein, we present a simple synthesis of mixed-valent phosphinophosphoranes bearing three- and five-coordinate phosphorus centers. Compounds with phosphorus-phosphorus bonds were synthesized via a reaction of lithium phosphides RR'PLi with cat2PCl (cat = catecholate), whereas derivatives with methylene-linked phosphorus centers were obtained via a reaction of phosphanylmethanides RR'CH2Li with cat2PCl. The presence of accessible lone-pair electrons on the P-phosphanyl atom of phosphinophosphoranes during the reaction of the title compounds with H3B·SMe2, where phosphinophosphorane-borane adducts were formed quantitatively, was confirmed. Furthermore, the Lewis basic and Lewis acidic properties of the phosphinophosphoranes in reactions with phenyl isothiocyanate were tested. Depending on the structure of the starting phosphinophosphorane, phosphinophosphorylation of PhNCS or formation of a five-membered zwitterionic adduct was observed. The structures of the isolated compounds were unambiguously determined by heteronuclear nuclear magnetic resonance spectroscopy and single-crystal X-ray diffraction. Moreover, by applying density functional theory calculations, we compared the Lewis basicity and nucleophilicity of diversified trivalent P-centers.


Assuntos
Compostos de Fósforo , Cristalografia por Raios X , Fósforo/química , Elétrons , Espectroscopia de Ressonância Magnética , Lítio
4.
Inorg Chem ; 60(6): 3794-3806, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33657801

RESUMO

Herein, we present the first example of the activation of small molecules by P-B-P bond systems. The reactivity study involves reactions of two selected diphosphinoboranes, (t-Bu2P)2BPh (1') and (Cy2P)2BNiPr2 (2), that differ in terms of their structural and electronic properties for the activation of dihydrogen, carbon dioxide, and phenyl isocyanate. Diphosphinoborane 1' activates H2 under very mild conditions in the absence of a catalyst with the formation of the dimer (t-Bu2PB(Ph)H)2 and t-Bu2PH. Conversely, diphosphinoborane 2 did not react with H2 under the same conditions. The reaction of 1' with CO2 led to the formation of a compound with an unusual structure, where two phosphinoformate units were coordinated to the PhBOBPh moiety. In addition, 2 reacted with CO2 to insert two CO2 molecules into the P-B bonds of the parent diphosphinoborane. Both diphosphinoboranes activated PhNCO, yielding products resulting from the addition of two and/or three PhNCO molecules and the formation of new P-C, B-O, B-N, and C-N bonds. The products of the activation of small molecules by diphosphinoboranes were characterized with nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy, single-crystal X-ray diffraction, and elemental analysis. Additionally, the reaction mechanisms of the activation of small molecules by diphosphinoboranes were elucidated by theoretical methods.

5.
Inorg Chem ; 59(9): 6332-6337, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32286811

RESUMO

Herein, we present the first transformation of borylphosphine into borylphosphinite using nitrous oxide. Borylphosphine reacts with N2O via insertion of a single oxygen atom into the P-B bond and formation of a P-O-B bond system. Borylphosphine and borylphosphinite capture SO2 and activate it in an irreversible and reversible manner, respectively.

6.
Inorg Chem ; 59(8): 5463-5474, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32216307

RESUMO

The reactivities of phosphanylphosphinidene complexes [(DippN)2W(Cl)(η2-P-PtBu2)]- (1), [(pTol3P)2Pt(η2-P═PtBu2)] (2), and [(dppe)Pt(η2-P═PtBu2)] (3) toward dihaloalkanes and methyl iodide were investigated. The reactions of the anionic tungsten complex (1) with stochiometric Br(CH2)nBr (n = 3, 4, 6) led to the formation of neutral complexes with a tBu2PP(CH2)3Br ligand or neutral dinuclear complexes with unusual tetradentate tBu2PP(CH2)nPPtBu2 ligands (n = 4, 6). The methylation of platinum complexes 2 and 3 with MeI yielded neutral or cationic complexes bearing side-on coordinated tBu2P-P-Me moieties. The reaction of 2 with I(CH2)2I gave a platinum complex with a tBu2P-P-I ligand. When the same dihaloalkane was reacted with 3, the P-P bond in the phosphanylphosphinidene ligand was cleaved to yield tBu2PI, phosphorus polymers, [(dppe)PtI2] and C2H4. Furthermore, the reaction of 3 with Br(CH2)2Br yielded dinuclear complex bearing a tetraphosphorus tBu2PPPPtBu2 ligand in the coordination sphere of the platinum. The molecular structures of the isolated products were established in the solid state and in solution by single-crystal X-ray diffraction and NMR spectroscopy. DFT studies indicated that the polyphosphorus ligands in the obtained complexes possess structures similar to free phosphenium cations tBu2P+═P-R (R = Me, I) or (tBu2P+═P)2.

7.
Inorg Chem ; 58(12): 7905-7914, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31125217

RESUMO

The reactivity of the phosphanylphosphinidene complex [(DippN)2W(Cl)(η2-P-P tBu2)]- (1) toward chalcogens (Ch = Se, S) was studied. Reactions of stoichiometric amounts of 1 with chalcogens in DME yielded monomeric tungsten complexes with phosphanylphosphinidene chalcogenide ligands of the formula tBu2P-P-Ch (Ch = Se (in 2) and S (in 5)), which can be regarded as products of the addition of a chalcogen atom to a P═W bond in starting complex 1. The dissolution of selenophosphinidene complex 2 in nondonor solvents led to the formation of a dinuclear complex of tungsten (3) bearing a tBu2P(Se)-P ligand together with [ tBuSe2Li(dme)2]2 and polyphosphorus species. Under the same reaction conditions, thiophosphinidene complex 5 dimerized via the formation of transient complex 7, possessing a thiotetraphosphane-diido moiety tBu2P(S)-P-P-P tBu2. The elimination of the tBu2PS group from 7 yielded stable dinuclear tungsten complex 8 with an unusual phosphinidene tBu2P-P-P ligand. The reaction of 1 with excess chalcogen led to the cleavage of the P-P bond in the tBu2P-P ligand and the formation of [(DippN)2W(PCh4)]22- and [ tBuCh2Li(dme)2]2. The isolated compounds were characterized by NMR spectroscopy and X-ray crystallography. Furthermore, the calculated geometries of the free selenophosphinidenes, tBu2P-P-Se and tBu2P(Se)-P, were compared with their geometries when serving as ligands in complexes 2 and 3.

8.
Inorg Chem ; 56(18): 11030-11042, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28841309

RESUMO

This work describes a series of iron(II) phosphanylphosphido complexes. These compounds were obtained by reacting lithiated diphosphanes R2PP(SiMe3)Li (R = t-Bu, i-Pr) with an iron(II) ß-diketiminate complex, [LFe(µ2-Cl)2Li(DME)2] (1), where DME = 1,2-dimethoxyethane and L = Dippnacnac (ß-diketiminate). While the reaction of 1 with t-Bu2PP(SiMe3)Li yields [LFe(η1-Me3SiPP-t-Bu2)] (2), that of 1 with equimolar amounts of i-Pr2PP(SiMe3)Li, in DME, leads to [LFe(η2-i-Pr2PPSiMe3)] (3). In contrast, the reaction of 1 with (i-Pr2N)2PP(SiMe3)Li provides not an iron-containing complex but 1-[(diisopropylamino)phosphine]-2,4-bis(diisopropylamino)-3-(trimethylsilyl)tetraphosphetane (4). The structures of 2-4 were determined using diffractometry. Thus, 2 exhibits a three-coordinate iron site and 3 a four-coordinate iron site. The increase in the coordination number is induced by the change from an anticlinal to a synclinal conformation of the phoshpanylphosphido ligands. The electronic structures of 2 and 3 were assessed through a combined field-dependent 57Fe Mössbauer and high-frequency and -field electron paramagnetic resonance spectroscopic investigation in conjunction with analysis of their magnetic susceptibility and magnetization data. These studies revealed two high-spin iron(II) sites with S = 2 ground states that have different properties. While 2 exhibits a zero-field splitting described by a positive D parameter (D = +17.4 cm-1; E/D = 0.11) for 3, this parameter is negative [D = -25(5) cm-1; E/D = 0.15(5)]. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations provide insights into the origin of these differences and allow us to rationalize the fine and hyperfine structure parameters of 2 and 3. Thus, for 2, the spin-orbit coupling mixes a z2-type ground state with two low-lying {xz/yz} orbital states. These interactions lead to an easy plane of magnetization, which is essentially parallel to the plane defined by the N-Fe-N atoms. For 3, we find a yz-type ground state that is strongly mixed with a low-lying z2-type orbital state. In this case, the spin-orbit interaction leads to a partial unquenching of the orbital momentum along the x axis, that is, to an easy axis of magnetization oriented roughly along the Fe-P bond of the phosphido moiety.

9.
Inorg Chem ; 54(17): 8380-7, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26287312

RESUMO

The reactivity of an anionic phosphanylphosphinidene complex of tungsten(VI), [(2,6-i-Pr2C6H3N)2(Cl)W(η(2)-t-Bu2P═P)]Li·3DME toward PMe3, halogenophosphines, and iodine was investigated. Reaction of the starting complex with Me3P led to formation of a new neutral phosphanylphosphinidene complex, [(2,6-i-Pr2C6H3N)2(Me3P)W(η(2)-t-Bu2P═P)]. Reactions with halogenophosphines yielded new catena-phosphorus complexes. From reaction with Ph2PCl and Ph2PBr, a complex with an anionic triphosphorus ligand t-Bu2P-P((-))-PPh2 was isolated. The main product of reaction with PhPCl2 was a tungsten(VI) complex with a pentaphosphorus ligand, t-Bu2P-P((-))-P(Ph)-P((-))-P-t-Bu2. Iodine reacted with the starting complex as an electrophile under splitting of the P-P bond in the t-Bu2P═P unit to yield [(1,2-η-t-Bu2P-P-P-t-Bu2)W(2,6-i-Pr2C6H3N)2Cl], t-Bu2PI, and phosphorus polymers. The molecular structures of the isolated products in the solid state and in solution were established by single crystal X-ray diffraction and NMR spectroscopy.

10.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 2): m72, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23424421

RESUMO

In the title compound, [Zr(C(12)H(18)N)(2)(C(4)H(10)N)(2)(C(4)H(11)N)] or [Zr(HNC(6)H(3) (i)Pr(2))(2)(NEt(2))(2)(HNEt(2))], which was obtained by the reaction of Zr(NEt)(4) with (i)Pr(2)C(6)H(3)NH(2), the Zr(IV) atom is in a trigonal-bipiramidal geometry in which the N atoms from two (i)Pr(2)C(6)H(3)NH and one NEt(2) ligand occupy the equatorial positions, and the N atoms of an NEt(2) and an Et(2)NH ligand occupy the apical positions. An intra-molecular N-H⋯N contact occurs. There are two independent molecules in the asymmetric unit.

11.
Dalton Trans ; 52(13): 4161-4166, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36891892

RESUMO

Triphosphinoboranes activated the B-H bond in the BH3 molecule without any catalysts at room temperature. Hydroboration reactions led to boraphosphacyloalkanes with diverse structures. The outcomes of reactions depend on the size of the phosphanyl substituent on the boron atom of the parent triphosphinoborane, where derivatives of boraphosphacyclobutane and boraphosphacyclohexane were obtained. Furthermore, the precursor of triphosphinoboranes, namely bromodiphosphinoborane, also exhibited high reactivity towards H3B·SMe2, yielding bromo-substituted boraphosphacyclobutane. The obtained products were characterized by heteronuclear NMR spectroscopy, single crystal X-ray diffraction, and elemental analysis.

12.
Dalton Trans ; 52(24): 8311-8315, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37255331

RESUMO

The concept of nonmetallic frustrated cations has been used in small molecule activation. The in situ generated ambiphilic phosphinoborinium cation activated phenyl isocyanate, diisopropylcarbodiimide, and acetonitrile under very mild conditions without any catalyst, yielding single-, double-, or mixed-activation products. Furthermore, the mechanisms of the reactions of the phosphinoborinium cation with small molecules were elucidated using density functional theory calculations.

13.
Dalton Trans ; 52(43): 16061-16066, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37850531

RESUMO

Phosphinoborenium cations stabilized by N-heterocyclic carbenes (NHCs) were synthesized via the reaction of bromo(phosphino)boranes with NHCs. Their structures were investigated by heteronuclear magnetic resonance spectroscopy, X-ray diffraction, and density functional theory calculations. They possess a planar trigonal boron center directly bonded with the pyramidal phosphanyl group (PR2) and can be treated as cationic phosphinoboranes. The reactivity of the selected NHC-phosphinoborenium cation was tested toward AuCl·SMe2 and Ph2PCl. In both reactions, the titled compound acted as a phosphido group donor under heterolytic cleavage of the P-B bond. Control experiments with parent phosphinoborane emphasized differences between the reactivity of low-coordinate neutral and cationic species with P-B functionality.

14.
Chem Commun (Camb) ; 58(72): 10068-10071, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35993273

RESUMO

Herein, we report access to phosphinoborinium cations via heterolytic cleavage of the boron-bromide bond in bromophosphinoborane. The product of the reaction was isolated as a dimeric dication possessing a planar B2P2 core. Activation of the C-H and C-P bonds in the dication led to the formation of the borinium-phosphaborene adduct. Reactivity studies revealed that the title cation exhibits ambiphilic properties and intramolecular frustrated Lewis pair features.

15.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 6): m707, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21579340

RESUMO

In the title compound, [FeLi(C(29)H(41)N(2))Cl(2)(C(4)H(10)O(2))(2)], the Fe(II) atom is coordinated by two N and two Cl atoms, generating a distorted FeN(2)Cl(2) tetra-hedral geometry. Additionally, one of the chloride atoms bridges to a lithium ion, which is solvated by two dimethoxy-ethane mol-ecules and is coordinated in a distorted trigonal-bipyramidal environment. The central Fe, Cl (× 2) and Li atoms are coplanar with a maximum deviation of 0.034 Å.

16.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 10): m1242, 2010 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-21587392

RESUMO

The title chain polymer compound, [GaLi(2)Br(C(3)H(9)OSi)(4)(C(4)H(8)O)(2)](n), was obtained in the reaction of GaBr(3) with Me(3)SiOLi in toluene/tetra-hydro-furan. The Ga(III) atom, located on a twofold rotation axis, is coordinated by four trimethyl-silanolate ligands and has a distorted tetra-hedral geometry. The Li(I) atom is four coordinated by one bridging Br atom located on an inversion centre, two trimethyl-silanolate ligands and one tetra-hydro-furane mol-ecule in a distorted tetra-hedral geometry. The polymeric chains extend along [001]. The tetra-hydro-furane mol-ecule is disordered over two positions with site-occupancy factors of 0.57 (2) and 0.43 (2).

17.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 7): o1648, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21587876

RESUMO

The title compound, C(14)H(16), is built up from three five-membered rings. Two of the five-membered rings display an envelope conformation and the third one is almost planar (r.m.s. deviation = 0.014 Å).

18.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 11): m1403, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21588835

RESUMO

The title compound, [Li(2)(C(9)H(14)N)(C(16)H(36)P(3))](n), is a by-product of the reaction of [Cp(C(5)H(4)CH(2)CH(2)NMe(2))ZrCl(2)](n) with (t)Bu(2)P-P(SiMe(3))Li in toluene. It is a coordination polymer composed of infinite chains running along [010]. One Li(I) atom is chelated by the cyclo-penta-dienyl ring and and the N atom of the scorpionate ligand and a P atom, whereas the other Li(I) atom is coordinated by the backside of the cyclo-penta-dienyl ring and two P atoms. Both Li(I) atoms adopt a distorted trigonal coordination. The structure was determined from a twinned crystal, but only the data from the main twin component was used. The fraction of components in the crystal was 0.555:0.445 and the twin matrix corresponds to twofold rotation about the c axis (00/00/001).

19.
Dalton Trans ; 49(29): 10091-10103, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32661526

RESUMO

We report the first series of homoleptic phosphido iron complexes synthesized by treating either the ß-diketiminato complex [(Dippnacnac)FeCl2Li(dme)2] (Dippnacnac = HC[(CMe)N(C6H3-2,6-iPr2)]2) or [FeBr2(thf)2] with an excess of phosphides R2PLi (R = tBu, tBuPh, Cy, iPr). Reaction outcomes depend strongly on the bulkiness of the phosphido ligands. The use of tBu2PLi precursor led to an anionic diiron complex 1 encompassing a planar Fe2P2 core with two bridging and two terminal phosphido ligands. An analogous reaction employing less sterically demanding phosphides, tBuPhPLi and Cy2PLi yielded diiron anionic complexes 2 and 3, respectively, featuring a short Fe-Fe interaction supported by three bridging phosphido groups and one additional terminal R2P- ligand at each iron center. Further tuning of the P-substrates bulkiness gave a neutral phosphido complex 4 possessing a tetrahedral Fe4 cluster core held together by six bridging iPr2P moieties. Moreover, we also describe the first homoleptic phosphanylphosphido iron complex 5, which features an iron center with low coordination provided by three tBu2P-P(SiMe3)- ligands. The structures of compounds 1-5 were determined by single-crystal X-ray diffraction and 1-3 by 1H NMR spectroscopy. Moreover, the electronic structures of 1-3 were interrogated using zero-field Mössbauer spectroscopy and DFT methods.

20.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 9): o2214, 2009 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21577615

RESUMO

In the title compound, C(24)H(56)N(4)P(2), the distance between the P atoms [2.2988 (8) and 2.3013 (13) Šin the major and minor occupancy components, respectively] is one of the longest reported for uncoordinated diphosphanes. The whole mol-ecule is disordered over two positions with site-occupation factors of 0.6447 (8) and 0.3553 (8). The structure adopts the synperiplanar conformation in the solid state [N-P-P-N torsion angle = 14.7 (5)°].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA