RESUMO
An optical amplification-free deep reservoir computing (RC)-assisted high-baudrate intensity modulation direct detection (IM/DD) system is experimentally demonstrated using a 100G externally modulated laser operated in C-band. We transmit 112 Gbaud 4-level pulse amplitude modulation (PAM4) and 100 Gbaud 6-level PAM (PAM6) signals over a 200-m single-mode fiber (SMF) link without any optical amplification. The decision feedback equalizer (DFE), shallow RC, and deep RC are adopted in the IM/DD system to mitigate impairment and improve transmission performance. Both PAM transmissions over a 200-m SMF with bit error rate (BER) performance below 6.25% overhead hard-decision forward error correction (HD-FEC) threshold are achieved. In addition, the BER of the PAM4 signal is below the KP4-FEC limit after 200-m SMF transmission enabled by the RC schemes. Thanks to the use of a multiple-layer structure, the number of weights in deep RC has been reduced by approximately 50% compared with the shallow RC, whereas the performance is comparable. We believe that the optical amplification-free deep RC-assisted high-baudrate link has a promising application in intra-data center communications.