Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 130(18): 3009-3022, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28743738

RESUMO

Nonsense-mutation-containing messenger ribonucleoprotein particles (mRNPs) transit through cytoplasmic foci called P-bodies before undergoing nonsense-mediated mRNA decay (NMD), a cytoplasmic mRNA surveillance mechanism. This study shows that the cytoskeleton modulates transport of nonsense-mutation-containing mRNPs to and from P-bodies. Impairing the integrity of cytoskeleton causes inhibition of NMD. The cytoskeleton thus plays a crucial role in NMD. Interestingly, disruption of actin filaments results in both inhibition of NMD and activation of premature termination codon (PTC) readthrough, while disruption of microtubules causes only NMD inhibition. Activation of PTC readthrough occurs concomitantly with the appearance of cytoplasmic foci containing UPF proteins and mRNAs with nonsense mutations but lacking the P-body marker DCP1a. These findings demonstrate that in human cells, PTC readthrough occurs in novel 'readthrough bodies' and requires the presence of UPF proteins.


Assuntos
Códon sem Sentido/genética , Citoplasma/metabolismo , RNA Helicases/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Linhagem Celular , Citocalasina D/farmacologia , Citoplasma/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Depsipeptídeos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Degradação do RNAm Mediada por Códon sem Sentido/genética , Biossíntese de Proteínas/efeitos dos fármacos , Ribonucleoproteínas/metabolismo
2.
Biochem Biophys Res Commun ; 509(2): 521-528, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30598261

RESUMO

Cystic fibrosis transmembrane regulator (CFTR) is a cyclic AMP-dependent Cl- channel, and its dysfunction, due to CFTR gene mutations, causes the lethal inherited disorder cystic fibrosis (CF). To date, widespread dysregulation of certain coding genes in CF airway epithelial cells is well studied and considered as the driver of pulmonary abnormality. However, the involvement of non-coding genes, novel classes of functional RNAs with little or no protein-coding capacity, in the regulation of CF-associated gene dysregulation is poorly understood. Here, we utilized integrative analyses of human transcriptome array (HTA) and characterized 99 coding and 91 non-coding RNAs that are dysregulated in CFTR-defective CF bronchial epithelial cell line CFBE41o-. Among these genes, the expression level of linc-SUMF1-2, an intergenic non-coding RNA (lincRNA) whose function is unknown, was inversely correlated with that of WT-CFTR and consistently higher in primary human CF airway epithelial cells (DHBE-CF). Further integrative analyses under linc-SUMF1-knockdown condition determined MXRA5, SEMA5A, CXCL10, AK022877, CTGF, MYC, AREG and LAMB3 as both CFTR- and linc-SUMF1-2-dependent dysregulated gene sets in CF airway epithelial cells. Overall, our analyses reveal linc-SUMF1-2 as a dysregulated non-coding gene in CF as well as CFTR-linc-SUMF1-2 axis as a novel regulatory pathway involved in CF-associated gene dysregulation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , Transcriptoma , Brônquios/citologia , Brônquios/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Humanos
3.
Mol Ther ; 24(8): 1351-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27434588

RESUMO

Cystic fibrosis (CF) is a life-shortening genetic disease. The root cause of CF is heritable recessive mutations that affect the cystic fibrosis transmembrance conductance regulator (CFTR) gene and the subsequent expression and activity of encoded ion channels at the cell surface. We show that CFTR is regulated transcriptionally by the actions of a novel long noncoding RNA (lncRNA), designated as BGas, that emanates from intron 11 of the CFTR gene and is expressed in the antisense orientation relative to the protein coding sense strand. We find that BGas functions in concert with several proteins including HMGA1, HMGB1, and WIBG to modulate the local chromatin and DNA architecture of intron 11 of the CFTR gene and thereby affects transcription. Suppression of BGas or its associated proteins results in a gain of both CFTR expression and chloride ion function. The observations described here highlight a previously underappreciated mechanism of transcriptional control and suggest that BGas may serve as a therapeutic target for specifically activating expression of CFTR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Regulação da Expressão Gênica , RNA Antissenso/genética , RNA Longo não Codificante , Fibrose Cística/metabolismo , Proteínas de Ligação a DNA/metabolismo , Loci Gênicos , Humanos , Modelos Biológicos , Ligação Proteica
4.
FASEB J ; 28(2): 791-801, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24200884

RESUMO

Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that impair its expression and/or chloride channel function. Here, we provide evidence that type 4 cyclic nucleotide phosphodiesterases (PDE4s) are critical regulators of the cAMP/PKA-dependent activation of CFTR in primary human bronchial epithelial cells. In non-CF cells, PDE4 inhibition increased CFTR activity under basal conditions (ΔISC 7.1 µA/cm(2)) and after isoproterenol stimulation (increased ΔISC from 13.9 to 21.0 µA/cm(2)) and slowed the return of stimulated CFTR activity to basal levels by >3-fold. In cells homozygous for ΔF508-CFTR, the most common mutation found in CF, PDE4 inhibition alone produced minimal channel activation. However, PDE4 inhibition strongly amplified the effects of CFTR correctors, drugs that increase expression and membrane localization of CFTR, and/or CFTR potentiators, drugs that increase channel gating, to reach ∼ 25% of the chloride conductance observed in non-CF cells. Biochemical studies indicate that PDE4s are anchored to CFTR and mediate a local regulation of channel function. Taken together, our results implicate PDE4 as an important determinant of CFTR activity in airway epithelia, and support the use of PDE4 inhibitors to potentiate the therapeutic benefits of CFTR correctors and potentiators.


Assuntos
Cloretos/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Epitélio/metabolismo , Amilorida/farmacologia , Células Cultivadas , Epitélio/efeitos dos fármacos , Humanos , Imunoprecipitação , Quinolonas/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Rolipram/farmacologia
5.
Am J Physiol Lung Cell Mol Physiol ; 304(5): L371-82, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23316065

RESUMO

The innate immune response to bacterial infection is mediated through Toll-like receptors (TLRs), which trigger tightly regulated signaling cascades through transcription factors including NF-κB. LPS activation of TLR4 triggers internalization of the receptor-ligand complex which is directed toward lysosomal degradation or endocytic recycling. Cystic fibrosis (CF) patients display a robust and uncontrolled inflammatory response to bacterial infection, suggesting a defect in regulation. This study examined the intracellular trafficking of TLR4 in CF and non-CF airway epithelial cells following stimulation with LPS. We employed cells lines [16hBE14o-, CFBE41o- (CF), and CFTR-complemented CFBE41o-] and confirmed selected experiments in primary nasal epithelial cells from non-CF controls and CF patients (F508del homozygous). In control cells, TLR4 expression (surface and cytoplasmic) was reduced after LPS stimulation but remained unchanged in CF cells and was accompanied by a heightened inflammatory response 24 h after stimulation. All cells expressed markers of the early (EEA1) and late (Rab7b) endosomes at basal levels. However, only CF cells displayed persistent expression of Rab7b following LPS stimulation. Rab7 variants may directly internalize bacteria to the Golgi for recycling or to the lysosome for degradation. TLR4 colocalized with the lysosomal marker LAMP1 in 16 hBE14o- cells, suggesting that TLR4 is targeted for lysosomal degradation in these cells. However, this colocalization was not observed in CFBE41o- cells, where persistent expression of Rab7 and release of proinflammatory cytokines was detected. Consistent with the apparent inability of CF cells to target TLR4 toward the lysosome for degradation, we observed persistent surface and cytoplasmic expression of this pathogen recognition receptor. This defect may account for the prolonged cycle of chronic inflammation associated with CF.


Assuntos
Brônquios/imunologia , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Lisossomos/metabolismo , Pseudomonas aeruginosa/imunologia , Mucosa Respiratória/imunologia , Receptor 4 Toll-Like/metabolismo , Brônquios/citologia , Linhagem Celular , Fibrose Cística/patologia , Endossomos/metabolismo , Humanos , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Infecções por Pseudomonas/imunologia , Mucosa Respiratória/citologia , Proteínas de Transporte Vesicular/biossíntese , Proteínas rab de Ligação ao GTP/biossíntese , proteínas de unión al GTP Rab7
6.
Am J Physiol Lung Cell Mol Physiol ; 303(2): L97-106, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22582115

RESUMO

Prostasin is a membrane-anchored protease expressed in airway epithelium, where it stimulates salt and water uptake by cleaving the epithelial Na(+) channel (ENaC). Prostasin is activated by another transmembrane tryptic protease, matriptase. Because ENaC-mediated dehydration contributes to cystic fibrosis (CF), prostasin and matriptase are potential therapeutic targets, but their catalytic competence on airway epithelial surfaces has been unclear. Seeking tools for exploring sites and modulation of activity, we used recombinant prostasin and matriptase to identify substrate t-butyloxycarbonyl-l-Gln-Ala-Arg-4-nitroanilide (QAR-4NA), which allowed direct assay of proteases in living cells. Comparisons of bronchial epithelial cells (CFBE41o-) with and without functioning cystic fibrosis transmembrane conductance regulator (CFTR) revealed similar levels of apical and basolateral aprotinin-inhibitable activity. Although recombinant matriptase was more active than prostasin in hydrolyzing QAR-4NA, cell surface activity resisted matriptase-selective inhibition, suggesting that prostasin dominates. Surface biotinylation revealed similar expression of matriptase and prostasin in epithelial cells expressing wild-type vs. ΔF508-mutated CFTR. However, the ratio of mature to inactive proprostasin suggested surface enrichment of active enzyme. Although small amounts of matriptase and prostasin were shed spontaneously, prostasin anchored to the cell surface by glycosylphosphatidylinositol was the major contributor to observed QAR-4NA-hydrolyzing activity. For example, the apical surface of wild-type CFBE41o- epithelial cells express 22% of total, extractable, aprotinin-inhibitable, QAR-4NA-hydrolyzing activity and 16% of prostasin immunoreactivity. In conclusion, prostasin is present, mature and active on the apical surface of wild-type and CF bronchial epithelial cells, where it can be targeted for inhibition via the airway lumen.


Assuntos
Membrana Celular/enzimologia , Células Epiteliais/enzimologia , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Aprotinina/química , Aprotinina/farmacologia , Técnicas de Cultura de Células , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Polaridade Celular , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Impedância Elétrica , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Humanos , Oligopeptídeos/química , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Serina Endopeptidases/química , Serina Endopeptidases/imunologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacologia , Especificidade por Substrato
7.
J Pharmacol Sci ; 118(4): 512-520, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22466961

RESUMO

Cystic fibrosis (CF) is the most common lethal inherited disorder and is caused by mutations in the gene encoding the CF transmembrane regulator (CFTR). The CF lung expresses a profound proinflammatory phenotype that appears to be related to a constitutive hypersecretion of interleukin (IL)-8 from airway epithelial cells in response to microbial infection. Since overproduction of IL-8 in CF contributes to massive bronchial infiltrates of neutrophils, identification of the pathways underlying IL-8 induction could provide novel drug targets for treatment of neutrophil-dominated inflammatory diseases such as CF. Here, we show that IL-17A synergistically increases IL-8 production induced by a toll-like receptor (TLR) 2 agonist, peptidoglycan (PGN), or TLR4 agonist, lipopolysaccharide (LPS), in a human CF bronchial epithelial cell line (CFBE41o-). A strong synergism was also observed in primary human CF bronchial epithelial cells, but not in human non-CF cell lines and primary cells. Notably, despite the induction of nuclear factor-κB and MAP kinases during TLR2 or TLR4 activation in CFBE41o-, IL-17A-dependent synergism appears to be the result of enhanced PGN- or LPS-induced phosphorylation of p38. Taken together, these studies provide evidence that IL-17A is a critical factor in increasing IL-8 expression in bacteria-infected CF airways via a pathway that regulates p38 phosphorylation.


Assuntos
Fibrose Cística/patologia , Células Epiteliais/patologia , Interleucina-17/fisiologia , Interleucina-8/biossíntese , Mucosa Respiratória/patologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/fisiologia , Receptor 4 Toll-Like/fisiologia , Linhagem Celular , Fibrose Cística/imunologia , Fibrose Cística/microbiologia , Relação Dose-Resposta Imunológica , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-8/genética , Mucosa Respiratória/imunologia , Mucosa Respiratória/microbiologia , Receptor 2 Toll-Like/agonistas , Receptor 4 Toll-Like/agonistas
8.
Front Genome Ed ; 4: 843885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465025

RESUMO

Background: Gene correction via homology directed repair (HDR) in patient-derived induced pluripotent stem (iPS) cells for regenerative medicine are becoming a more realistic approach to develop personalized and mutation-specific therapeutic strategies due to current developments in gene editing and iPSC technology. Cystic fibrosis (CF) is the most common inherited disease in the Caucasian population, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Since CF causes significant multi-organ damage and with over 2,000 reported CFTR mutations, CF patients could be one prominent population benefiting from gene and cell therapies. When considering gene-editing techniques for clinical applications, seamless gene corrections of the responsible mutations, restoring native "wildtype" DNA sequence without remnants of drug selectable markers or unwanted DNA sequence changes, would be the most desirable approach. Result: The studies reported here describe the seamless correction of the W1282X CFTR mutation using CRISPR/Cas9 nickases (Cas9n) in iPS cells derived from a CF patient homozygous for the W1282X Class I CFTR mutation. In addition to the expected HDR vector replacement product, we discovered another class of HDR products resulting from vector insertion events that created partial duplications of the CFTR exon 23 region. These vector insertion events were removed via intrachromosomal homologous recombination (IHR) enhanced by double nicking with CRISPR/Cas9n which resulted in the seamless correction of CFTR exon 23 in CF-iPS cells. Conclusion: We show here the removal of the drug resistance cassette and generation of seamless gene corrected cell lines by two independent processes: by treatment with the PiggyBac (PB) transposase in vector replacements or by IHR between the tandemly duplicated CFTR gene sequences.

9.
Exp Lung Res ; 37(6): 319-26, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21649525

RESUMO

ABSTRACT As part of the innate and adaptive immune system, airway epithelial cells secrete proinflammatory cytokines after activation of Toll-like receptors (TLRs) by pathogens. Nevertheless, cystic fibrosis (CF) airways are chronically infected with Pseudomonas aeruginosa, suggesting a modified immune response in CF. The authors have shown that in CF bronchial epithelial cells, a reduced surface expression of TLR-4 causes a diminished interleukin (IL)-8 and IL-6 response upon lipopolysaccharide (LPS) stimulation. However, there is no information regarding activation of the MyD88 (myeloid differentiation primary response gene 88)-independent TLR-4 signaling pathway by LPS, which results in the activation of adaptive immune responses by secretion of the T cell-recruiting chemokine interferon-γ-inducible protein (IP)-10. Therefore, the authors investigated the induction of IP-10 in CF bronchial epithelial cell line CFBE41o- and its CFTR-corrected isotype under well-differentiating conditions. TLR-4 surface expression was significantly reduced in CFBE41o- by a factor of 2, compared to the CFTR-corrected cells. In CFTR-corrected cells, stimulation with LPS increased IP-10 secretion. Incubating cells with siRNA directed against TLR-4 inhibited the LPS stimulated increase of IP-10 in CFTR-corrected cells. The reduced TLR-4 surface expression in CF cells causes the loss of induction of IP-10 by LPS. This could compromise adaptive immune responses in CF due to a reduced T-cell recruitment.


Assuntos
Quimiocina CXCL10/deficiência , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Interferon gama/metabolismo , Receptor 4 Toll-Like/biossíntese , Linhagem Celular , Quimiocina CXCL10/biossíntese , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Fibrose Cística/imunologia , Retículo Endoplasmático/metabolismo , Células Epiteliais/imunologia , Humanos , Interleucina-6/imunologia , Interleucina-6/metabolismo , Interleucina-8/imunologia , Interleucina-8/metabolismo , Lipopolissacarídeos/farmacologia , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
10.
Am J Respir Cell Mol Biol ; 42(4): 424-31, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19502387

RESUMO

Airway epithelial cells contribute to the inflammatory response of the lung, and their innate immune response is primarily mediated via Toll-like receptor (TLR) signaling. Cystic fibrosis (CF) airways are chronically infected with Pseudomonas aeruginosa, suggesting a modified immune response in CF. We investigated the TLR-4 expression and the inflammatory profile (IL-8 and IL-6 secretion) in CF bronchial epithelial cell line CFBE41o- and its CF transmembrane ion condcutance regulator (CFTR)-corrected counterpart grown under air-liquid interface conditions after stimulation with lipopolysaccharide (LPS) from gram-negative bacteria. In CFTR-corrected cells, IL-8 and IL-6 secretions were constitutively activated but significantly increased after LPS stimulation compared with CFBE41o-. Blocking TLR-4 by a specific antibody significantly inhibited IL-8 secretion only in CFTR-corrected cells. Transfection with specific siRNA directed against TLR-4 mRNA significantly reduced the response to LPS in both cell lines. Fluorescence-activated cell sorter analysis revealed significantly higher levels of TLR-4 surface expression in CFTR-corrected cells. In histologic lung sections of patients with CF, the TLR-4 expression in the bronchial epithelium was significantly reduced compared with healthy control subjects. In CF the loss of CFTR function appears to decrease innate immune responses, possibly by altering the expression of TLR-4 on airway epithelial cells. This may contribute to chronic bacterial infection of CF airways.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Fibrose Cística/imunologia , Células Epiteliais/imunologia , Imunidade Inata , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Mucosa Respiratória/imunologia , Receptor 4 Toll-Like/imunologia , Adolescente , Adulto , Anticorpos/imunologia , Anticorpos/farmacologia , Brônquios/imunologia , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Criança , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-6/biossíntese , Interleucina-6/imunologia , Interleucina-8/biossíntese , Interleucina-8/imunologia , Lipopolissacarídeos/farmacologia , Masculino , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/biossíntese , Receptor 4 Toll-Like/genética
11.
J Physiol ; 588(Pt 8): 1195-209, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20156845

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is an integral membrane glycoprotein which functions as an anion channel and influences diverse cellular processes. We studied its role in the development of epithelial tightness by expressing wild-type (WT-CFTR) or mutant (Delta F508-CFTR) CFTR in human airway epithelial cell monolayers cultured at the air-liquid interface. Green fluorescent protein (GFP)-tagged WT or Delta F508 constructs were expressed in the CF bronchial cell line CFBE41o(-) using adenoviruses, and the results were compared with those obtained using CFBE41o(-) lines stably complemented with wild-type or mutant CFTR. As predicted, GFP-Delta WT-CFTR reached the apical membrane whereas GFP-F508-CFTR was only detected intracellularly. Although CFTR expression would be expected to reduce transepithelial resistance (TER), expressing GFP-CFTR significantly increased the TER of CFBE41o(-) monolayers whilst GFP-Delta F508-CFTR had no effect. Similar results were obtained with cell lines stably overexpressing Delta F508-CFTR or WT-CFTR. Preincubating Delta F508-CFTR monolayers at 29 degrees C reduced mannitol permeability and restored TER, and the effect on TER was reversible during temperature oscillations. Expression of GFP-Delta F508-CFTR or GFP-WT-CFTR in a cell line already containing endogenous WT-CFTR (Calu-3) did not alter TER. The CFTR- and temperature-dependence of TER were not affected by the CFTR inhibitor CFTR(inh)172 or low-chloride medium; therefore the effect of CFTR on barrier function was unrelated to its ion channel activity. Modulation of TER was blunted but not eliminated by genistein, implying the involvement of tyrosine phosphorylation and other mechanisms. Modulation of CFTR trafficking was correlated with an increase in tight junction depth. The results suggest that CFTR trafficking is required for the normal organisation and function of tight junctions. A reduction in barrier function caused by endoplasmic reticulum retention of Delta F508-CFTR may contribute to fluid hyperabsorption in CF airways.


Assuntos
Brônquios/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Células Epiteliais/fisiologia , Junções Íntimas/fisiologia , Brônquios/citologia , Brônquios/efeitos dos fármacos , Linhagem Celular , Fibrose Cística/patologia , Fibrose Cística/fisiopatologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Genisteína/farmacologia , Proteínas de Fluorescência Verde , Humanos , Manitol/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Temperatura , Tirosina/metabolismo
12.
Cell Physiol Biochem ; 26(6): 983-90, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21220929

RESUMO

BACKGROUND/AIMS: While the Cl(-) efflux assays are relatively straightforward, their ability to assess the efficacy of phenotypic correction in cystic fibrosis (CF) tissue or cells may be limited. Accurate assessment of therapeutic efficacy, i.e., correlating wild type CF transmembrane conductance regulator (CFTR) levels with phenotypic correction in tissue or individual cells, requires a sensitive assay. METHODS: Radioactive chloride ((36)Cl) efflux was compared to Ussing chamber analysis for measuring cAMP-dependent Cl(-) transport in mixtures of human normal (16HBE14o-) and cystic fibrosis (CF) (CFTE29o- or CFBE41o-, respectively) airway epithelial cells. Cell mixtures with decreasing amounts of 16HBE14o- cells were evaluated. RESULTS: Efflux and Ussing chamber studies on mixed populations of normal and CF airway epithelial cells showed that, as the number of CF cells within the population was progressively increased, the cAMP-dependent Cl(-) decreased. The (36)Cl efflux assay was effective for measuring Cl(-) transport when ≥ 25% of the cells were normal. If < 25% of the cells were phenotypically wild-type (wt), the (36)Cl efflux assay was no longer reliable. Polarized CFBE41o- cells, also homozygous for the ΔF508 mutation, were used in the Ussing chamber studies. Ussing analysis detected cAMP-dependent Cl(-) currents in mixtures with ≥1% wild-type cells indicating that Ussing analysis is more sensitive than (36)Cl efflux analysis for detection of functional CFTR. CONCLUSIONS: Assessment of CFTR function by Ussing analysis is more sensitive than (36)Cl efflux analysis. Ussing analysis indicates that cell mixtures containing 10% 16HBE14o- cells showed 40-50% of normal cAMP-dependent Cl(-) transport that drops off exponentially between 10-1% wild-type cells.


Assuntos
Cloretos/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Humanos , Transporte de Íons , Fenótipo , Radioisótopos/química
13.
BMC Biotechnol ; 10: 9, 2010 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-20144189

RESUMO

BACKGROUND: The delivery of DNA into human cells has been the basis of advances in the understanding of gene function and the development of genetic therapies. Numerous chemical and physical approaches have been used to deliver the DNA, but their efficacy has been variable and is highly dependent on the cell type to be transfected. RESULTS: Studies were undertaken to evaluate and compare the transfection efficacy of several chemical reagents to that of the electroporation/nucleofection system using both adherent cells (primary and transformed airway epithelial cells and primary fibroblasts as well as embryonic stem cells) and cells in suspension (primary hematopoietic stem/progenitor cells and lymphoblasts). With the exception of HEK 293 cell transfection, nucleofection proved to be less toxic and more efficient at effectively delivering DNA into the cells as determined by cell proliferation and GFP expression, respectively. Lipofectamine and nucleofection of HEK 293 were essentially equivalent in terms of toxicity and efficiency. Transient transfection efficiency in all the cell systems ranged from 40%-90%, with minimal toxicity and no apparent species specificity. Differences in efficiency and toxicity were cell type/system specific. CONCLUSIONS: In general, the Amaxa electroporation/nucleofection system appears superior to other chemical systems. However, there are cell-type and species specific differences that need to be evaluated empirically to optimize the conditions for transfection efficiency and cell survival.


Assuntos
DNA/química , Transfecção/métodos , Animais , Linhagem Celular , Sobrevivência Celular , Eletroporação , Células-Tronco Embrionárias/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Humanos , Lipídeos/química , Camundongos , Polietilenoimina/química , Coelhos , Suínos
14.
Cell Physiol Biochem ; 24(5-6): 347-60, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19910675

RESUMO

BACKGROUND: Deletion of phenylalanine-508 (DeltaF508) from the first nucleotide-binding domain (NBD1) in the wild-type cystic fibrosis (CF) transmembrane-conductance regulator (wtCFTR) causes CF. However, the mechanistic relationship between DeltaF508-CFTR and the diversity of CF disease is unexplained. The surface location of F508 on NBD1 creates the potential for protein-protein interactions and nearby, lies a consensus sequence (SYDE) reported to control the pleiotropic protein kinase CK2. METHODS: Electrophysiology, immunofluorescence and biochemistry applied to CFTR-expressing cells, Xenopus oocytes, pancreatic ducts and patient biopsies. RESULTS: Irrespective of PKA activation, CK2 inhibition (ducts, oocytes, cells) attenuates CFTR-dependent Cl(-) transport, closing wtCFTR in cell-attached membrane patches. CK2 and wtCFTR co-precipitate and CK2 co-localized with wtCFTR (but not DeltaF508-CFTR) in apical membranes of human airway biopsies. Comparing wild-type and DeltaF508CFTR expressing oocytes, only DeltaF508-CFTR Cl(-) currents were insensitive to two CK2 inhibitors. Furthermore, wtCFTR was inhibited by injecting a peptide mimicking the F508 region, whereas the DeltaF508-equivalent peptide had no effect. CONCLUSIONS: CK2 controls wtCFTR, but not DeltaF508-CFTR. Others find that peptides from the F508 region of NBD1 allosterically control CK2, acting through F508. Hence, disruption of CK2-CFTR interaction by DeltaF508-CFTR might disrupt multiple, membrane-associated, CK2-dependent pathways, creating a new molecular disease paradigm for deleted F508 in CFTR.


Assuntos
Caseína Quinase II/metabolismo , Canais de Cloreto/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Transporte Biológico , Caseína Quinase II/análise , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular , Cricetinae , AMP Cíclico/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fenômenos Eletrofisiológicos , Cobaias , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Mutação , Oócitos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Xenopus
15.
Am J Respir Crit Care Med ; 178(12): 1271-81, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18787220

RESUMO

RATIONALE: Secondary bacterial infection following rhinovirus (RV) infection has been recognized in chronic obstructive pulmonary disease. OBJECTIVES: We sought to understand mechanisms by which RV infection facilitates secondary bacterial infection. METHODS: Primary human airway epithelial cells grown at air-liquid interface and human bronchial epithelial (16HBE14o-) cells grown as polarized monolayers were infected apically with RV. Transmigration of bacteria (nontypeable Haemophilus influenzae and others) was assessed by colony counting and transmission electron microscopy. Transepithelial resistance (R(T)) was measured by using a voltmeter. The distribution of zona occludins (ZO)-1 was determined by immunohistochemistry and immunoblotting. MEASUREMENTS AND MAIN RESULTS: Epithelial cells infected with RV showed 2-log more bound bacteria than sham-infected cultures, and bacteria were recovered from the basolateral media of RV- but not sham-infected cells. Infection of polarized airway epithelial cell cultures with RV for 24 hours caused a significant decrease in R(T) without causing cell death or apoptosis. Ultraviolet-treated RV did not decrease R(T), suggesting a requirement for viral replication. Reduced R(T) was associated with increased paracellular permeability, as determined by flux of fluorescein isothiocyanate (FITC)-inulin. Neutralizing antibodies to tumor necrosis factor (TNF)-alpha, IFN-gamma and IL-1beta reversed corresponding cytokine-induced reductions in R(T) but not that induced by RV, indicating that the RV effect is independent of these proinflammatory cytokines. Confocal microscopy and immunoblotting revealed the loss of ZO-1 from tight junction complexes in RV-infected cells. Intranasal inoculation of mice with RV1B also caused the loss of ZO-1 from the bronchial epithelium tight junctions in vivo. CONCLUSIONS: RV facilitates binding, translocation, and persistence of bacteria by disrupting airway epithelial barrier function.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Células Epiteliais/metabolismo , Infecções por Picornaviridae/metabolismo , Mucosa Respiratória/metabolismo , Rhinovirus/patogenicidade , Animais , Western Blotting , Brônquios/metabolismo , Brônquios/patologia , Brônquios/virologia , Células Cultivadas , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Técnica Indireta de Fluorescência para Anticorpo , Infecções por Haemophilus/metabolismo , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/patologia , Haemophilus influenzae/patogenicidade , Humanos , Imuno-Histoquímica , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Fosfoproteínas/metabolismo , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/virologia , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Proteínas de Xenopus , Proteína da Zônula de Oclusão-1
16.
Int J Biochem Cell Biol ; 40(3): 432-46, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17936667

RESUMO

Cystic fibrosis (CF) is a lethal disease caused by defective function of the cftr gene product, the CF transmembrane conductance regulator (CFTR) that leads to oxidative damage and excessive inflammatory response in lungs of CF patients. We here report the effects of oxidative stress (hyperoxia, 95% O(2)) on the expression of pro-inflammatory interleukin (IL)-8 and CXCR1/2 receptors in two human CF lung epithelial cell lines (IB3-1, with the heterozygous F508del/W1282X mutation and CFBE41o- with the homozygous F508del/F508del mutation) and two control non-CF lung epithelial cell lines (S9 cell line derived from IB3-1 after correction with wtCFTR and the normal bronchial cell line 16HBE14o-). Under oxidative stress, the expression of IL-8 and CXCR1/2 receptors was increased in CF, corrected and normal lung cell lines. The effects of oxidative stress were also investigated by measuring the transcription nuclear factor kappaB (NF-kappaB) and activator protein-1 (AP-1) activities. Under oxidative stress, no increase of NF-kappaB activation was observed in CF lung cells in contrast to that observed in normal and corrected CF lung cells. The signalling of mitogen-activated protein (MAP) kinases was further studied. We demonstrated that extracellular signal-regulated kinase (ERK1/2) and AP-1 activity was markedly enhanced in CF but not non-CF lung cells under oxidative stress. Consistently, inhibition of ERK1/2 in oxidative stress-exposed CF lung cells strongly decreased both the IL-8 production and CXCR1/2 expression. Therefore, targeting of ERK1/2 MAP kinase may be critical to reduce oxidative stress-mediated inflammation in lungs of CF patients.


Assuntos
Fibrose Cística/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucina-8/biossíntese , Pulmão/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Estresse Oxidativo/fisiologia , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores CXCR/metabolismo , Fator de Transcrição AP-1/metabolismo , Quinase Induzida por NF-kappaB
17.
BMC Mol Biol ; 9: 39, 2008 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-18423053

RESUMO

BACKGROUND: The clinical course of cystic fibrosis (CF) is characterized by recurrent pulmonary infections and chronic inflammation. We have recently shown that decreased methylation of the toll-like receptor-2 (TLR2) promoter leads to an apparent CF-related up-regulation of TLR2. This up-regulation could be responsible, in part, for the CF-associated enhanced proinflammatory responses to various bacterial products in epithelial cells. However, the molecular mechanisms underlying DNA hypomethylation-dependent enhancement of TLR2 expression in CF cells remain unknown. RESULTS: The present study indicates that there is a specific CpG region (CpG#18-20), adjacent to the SP1 binding site that is significantly hypomethylated in several CF epithelial cell lines. These CpGs encompass a minimal promoter region required for basal TLR2 expression, and suggests that CpG#18-20 methylation regulates TLR2 expression in epithelial cells. Furthermore, reporter gene analysis indicated that the SP1 binding site is involved in the methylation-dependent regulation of the TLR2 promoter. Inhibition of SP1 with mithramycin A decreased TLR2 expression in both CF and 5-azacytidine-treated non-CF epithelial cells. Moreover, even though SP1 binding was not affected by CpG methylation, SP1-dependent transcription was abolished by CpG methylation. CONCLUSION: This report implicates SP1 as a critical component of DNA demethylation-dependent up-regulation of TLR2 expression in CF epithelial cells.


Assuntos
Fibrose Cística/genética , Fibrose Cística/patologia , Metilação de DNA , Regulação da Expressão Gênica , Fator de Transcrição Sp1/metabolismo , Receptor 2 Toll-Like/genética , Transcrição Gênica , Sítios de Ligação , Linhagem Celular , Ilhas de CpG , Células Epiteliais , Humanos , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Ligação Proteica
18.
Free Radic Biol Med ; 45(12): 1653-62, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18845244

RESUMO

Pyocyanin (N-methyl-1-hydroxyphenazine), a redox-active virulence factor produced by the human pathogen Pseudomonas aeruginosa, is known to compromise mucociliary clearance. Exposure of human bronchial epithelial cells to pyocyanin increased the rate of cellular release of H(2)O(2) threefold above the endogenous H(2)O(2) production. Real-time measurements of the redox potential of the cytosolic compartment using the redox sensor roGFP1 showed that pyocyanin (100 microM) oxidized the cytosol from a resting value of -318+/-5 mV by 48.0+/-4.6 mV within 2 h; a comparable oxidation was induced by 100 microM H(2)O(2). Whereas resting Cl(-) secretion was slightly activated by pyocyanin (to 10% of maximal currents), forskolin-stimulated Cl(-) secretion was inhibited by 86%. The decline was linearly related to the cytosolic redox potential (1.8% inhibition/mV oxidation). Cystic fibrosis bronchial epithelial cells homozygous for DeltaF508 CFTR failed to secrete Cl(-) in response to pyocyanin or H(2)O(2), indicating that these oxidants specifically target the CFTR and not other Cl(-) conductances. Treatment with pyocyanin also decreased total cellular glutathione levels to 62% and cellular ATP levels to 46% after 24 h. We conclude that pyocyanin is a key factor that redox cycles in the cytosol, generates H(2)O(2), depletes glutathione and ATP, and impairs CFTR function in Pseudomonas-infected lungs.


Assuntos
Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Transporte de Íons/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Piocianina/farmacologia , Trifosfato de Adenosina/metabolismo , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Células Cultivadas , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Citosol/metabolismo , Células Epiteliais , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Mutação/genética , Oxirredução
19.
Cell Physiol Biochem ; 22(1-4): 57-68, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18769032

RESUMO

Little is known about the relationship between CF transmembrane conductance regulator (CFTR) gene expression and the corresponding transport of Cl. The phenotypic characteristics of polarized DeltaF508 homozygote CF bronchial epithelial (CFBE41o-) cells were evaluated following transfection with episomal expression vector containing either full-length (6.2kb) wild type (wt) and (4.7kb) DeltaF508CFTR cDNA. Forskolin-stimulated Cl secretion in two clones expressing the full-length wild type CFTR was assessed; clone c7-6.2wt gave 13.4+/-2.5 microA/cm(2) and clone c10-6.2wt showed 41.3+/-25.3 microA/cm(2). Another clone (c4-4.7DeltaF) complemented with the DeltaF508 CFTR cDNA showed high and stable expression of vector-derived DeltaF508 CFTR mRNA and a small cAMP-stimulated Cl current (4.7+/-0.7 microA/cm(2)) indicating DeltaF508CFTR trafficking to the plasma membrane at physiological temperatures. Vector-driven CFTR mRNA levels were 5-fold (c7-6.2wt), 14-fold (c10-6.2wt), and 27-fold (c7-4.7DeltaF) higher than observed in normal bronchial epithelial cells (16HBE14o-) endogenously expressing wtCFTR. Assessment of CFTR mRNA levels and CFTR function showed that cAMP-stimulated CFTR Cl currents were 33%, 167% and 24%, respectively, of those in 16HBE14o- cells. The data suggest that transgene expression needs to be significantly higher than endogenously expressed CFTR to restore functional wtCFTR Cl transport to levels sufficient to reverse CF pathology.


Assuntos
Brônquios/patologia , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Células Epiteliais/metabolismo , Linhagem Celular , Células Clonais , AMP Cíclico/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , DNA Complementar/genética , Condutividade Elétrica , Células Epiteliais/efeitos dos fármacos , Dosagem de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos , Humanos , Imuno-Histoquímica , Ativação do Canal Iônico/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Front Biosci ; 13: 2989-99, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17981772

RESUMO

Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Células-Tronco Embrionárias/metabolismo , Animais , Clonagem Molecular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , DNA/metabolismo , Marcação de Genes , Técnicas Genéticas , Camundongos , Microscopia de Fluorescência , Microscopia de Vídeo , Neurônios Motores/metabolismo , Mutação , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA