Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Anal Chem ; 94(25): 9081-9090, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35700415

RESUMO

Lipid nanoparticles (LNPs) are the most widely investigated delivery systems for nucleic acid-based therapeutics and vaccines. Loading efficiency of nucleic acids may vary with formulation conditions, and it is considered one of the critical quality attributes of LNP products. Current analytical methods for quantification of cargo loading in LNPs often require external standard preparations and preseparation of unloaded nucleic acids from LNPs; therefore, they are subject to tedious and lengthy procedures, LNP stability, and unpredictable recovery rates of the separated analytes. Here, we developed a modeling approach, which was based on locally weighted regression (LWR) of ultraviolet (UV) spectra of unpurified samples, to quantify the loading of nucleic acid cargos in LNPs in-situ. We trained the model to automatically tune the training library space according to the spectral features of a query sample so as to robustly predict the nucleic acid cargo concentration and rank loading capacity with similar performance as the more complicated experimental approaches. Furthermore, we successfully applied the model to a wide range of nucleic acid cargo species, including antisense oligonucleotides, single-guided RNA, and messenger RNA, in varied lipid matrices. The LWR modeling approach significantly saved analytical time and efforts by facile UV scans of 96-well sample plates within a few minutes and with minimal sample preprocessing. Our proof-of-concept study presented the very first data mining and modeling strategy to quantify nucleic acid loading in LNPs and is expected to better serve high-throughput screening workflows, thereby facilitates early-stage optimization and development of LNP formulations.


Assuntos
Lipídeos , Nanopartículas , Lipossomos , RNA Mensageiro , RNA Interferente Pequeno/genética , Análise Espectral
2.
J Chromatogr A ; 1715: 464575, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38150875

RESUMO

Antibody-drug conjugates (ADCs) are designed by chemically linking highly potent cytotoxic small molecule drugs to monoclonal antibodies of unique specificity for targeted destruction of cancer cells. This innovative class of molecules incurs unique developmental challenges due to its structural complexity of having both small molecule and protein components. The stability of the small molecule payload on the ADC is a critical attribute as it directly relates to product efficacy and patient safety. This study describes the use of an end-to-end automated workflow for effective and robust characterization of the small molecule drug while it is conjugated to the antibody. In this approach, online deconjugation was accomplished by an autosampler user defined program and 1D size exclusion chromatography was utilized to provide separation between small molecule and protein species. The small molecule portion was then trapped and sent to the 2D for separation and quantification by reversed-phase liquid chromatography with identification of impurities and degradants by mass spectrometry. The feasibility of this system was demonstrated on an ADC with a disulfide-based linker. This fully automated approach avoids tedious sample preparation that may lead to sample loss and large assay variability. Under optimized conditions, the method was shown to have excellent specificity, sensitivity (LOD of 0.036 µg/mL and LOQ of 0.144 µg/mL), linearity (0.04-72.1 µg/mL), precision (system precision %RSD of 1.7 and method precision %RSD of 3.4), accuracy (97.4 % recovery), stability-indicating nature, and was successfully exploited to analyze the small molecule drug on a panel of stressed ADC samples. Overall, the workflow established here offers a powerful analytical tool for profiling the in-situ properties of small molecule drugs conjugated to antibodies and the obtained information could be of great significance for guiding process/formulation development and understanding pharmacokinetic/pharmacodynamic behavior of ADCs.


Assuntos
Antineoplásicos , Imunoconjugados , Humanos , Imunoconjugados/química , Anticorpos Monoclonais/química , Cromatografia de Fase Reversa/métodos , Cromatografia em Gel , Espectrometria de Massas
3.
J Chromatogr A ; 1662: 462688, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34915190

RESUMO

Liposomes are an attractive drug delivery platform for a wide variety of pharmaceutical molecules. Encapsulation efficiency, which refers to the amount of drug contained inside liposomes compared with the total amount of drug, is a critical quality attribute of liposome products, as the free drug in a liposomal formulation may cause toxicity or undesired biodistribution. The determination of encapsulation efficiency requires the measurement of at least two of the three drug populations: total drug, encapsulated drug and free drug. However, direct measurement of the encapsulated drug and free drug remains a challenging analytical task. Nanoparticle exclusion chromatography (nPEC), an emerging high-performance liquid chromatography (HPLC) technique, has shown great potential in separating and quantifying the free drug in liposomal formulations. In this study, nPEC was systematically evaluated for two representative liposomal formulations containing either hydrophilic or hydrophobic small molecule drugs. It is reported for the first time that the insoluble free drug suspended in the aqueous formulation can be directly measured by nPEC. This free drug in the suspension sample was quantified with excellent accuracy and precision. On the other hand, the total drug measurement from dissociated liposomes was confirmed by the benchmark methodology of reversed phase liquid chromatography (RPLC). The facile quantitation of free and total drug in the liposome formulation enables the fast and accurate determination of the encapsulation efficiency, which can be used to guide the formulation development and characterize the product quality.


Assuntos
Lipossomos , Nanopartículas , Cromatografia em Gel , Sistemas de Liberação de Medicamentos , Distribuição Tecidual
4.
J Pharm Biomed Anal ; 194: 113796, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33288344

RESUMO

In the pharmaceutical industry, an array of analytical testing is performed to demonstrate the safety and efficacy of drug substance and drug products. Among the most critical attributes of release testing are quantitation of residual solvents from the manufacturing process, which pose toxicity concerns, and determination of water content, which can impact potency and shelf life. Residual solvent determination in pharmaceuticals is most commonly performed using headspace capillary gas chromatography (GC) with flame ionization detection (FID), a robust technique that incorporates a mode of detection noteworthy for its sensitivity and wide dynamic range. However, FID responds exclusively to combustible organic species, and does not produce any signal for common gases such as carbon dioxide, ammonia, and notably water. While thermal conductivity detection (TCD) is an alternate, universal mode of detection that has a known response to all GC-appropriate compounds, including water, its use among pharmaceutical companies is uncommon due to the ubiquity of the more sensitive FID and the availability of other techniques for water quantitation such as Karl Fischer titrations (KF). In this work, the use of headspace GC-TCD was successfully demonstrated for the development of a 7.5-minute method for simultaneous quantitation of water, over 25 common residual solvents, and other volatile impurities in small molecule pharmaceutical samples. By carefully controlling sample preparation to minimize the impact of residual water from the diluent, the results for residual solvents and water obtained by this technique were found to be comparable to those of GC-FID and KF, respectively. Headspace GC-TCD improves the throughput of drug testing by greatly reducing the need for KF testing and associated expensive reagents, and helps to conserve samples that are often limited in early stages of development. The technique has desired sensitivity, precision, accuracy and linear dynamic range suitable for pharmaceutical analysis.


Assuntos
Preparações Farmacêuticas , Água , Cromatografia Gasosa , Solventes/análise , Condutividade Térmica
5.
J Pharm Biomed Anal ; 197: 113952, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33601156

RESUMO

With advanced genetic engineering technologies and better understanding of disease biology, antibody-based therapeutics are emerging as promising new generation biopharmaceuticals. These novel antibody formats are carefully designed to possess desired features such as enhanced selectivity. However, their high level of structural complexity with multiple components often leads to long development and complex multi-step manufacturing processes, through which a variety of potential small molecule impurities can be introduced. In this work, an in-process assay was developed in which mixed-mode chromatography coupled with charged aerosol detection was utilized for multiplexed detection of nine reagents commonly used in development and manufacturing of antibody-based therapeutics: isopropyl ß-d-1-thiogalactopyranoside, methionine sulfoximine, ampicillin, guanidine, dehydroascorbic acid, glutathione, tris(2-carboxyethyl)phosphine, N-acetyl cysteine, and arginine. This method utilized a mixed-mode column with ion-exchange properties operated in the hydrophilic interaction chromatography mode. Various parameters were systematically optimized and under optimal conditions, the method demonstrated excellent specificity, sensitivity, linearity, precision, accuracy, and was successfully applied to determine residual impurities in multiple samples from antibody-derived molecules.


Assuntos
Anticorpos , Cromatografia de Fase Reversa , Aerossóis , Cromatografia Líquida de Alta Pressão , Interações Hidrofóbicas e Hidrofílicas
6.
Int J Pharm ; 592: 120087, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33189812

RESUMO

Amorphous solid dispersion (ASD) has become an attractive strategy to enhance solubility and bioavailability of poorly water-soluble drugs. To facilitate oral administration, ASDs are commonly incorporated into tablets. Disintegration and drug release from ASD tablets are thus critical for achieving the inherent solubility advantage of amorphous drugs. In this work, the impact of polymer type, ASD loading in tablet and polymer-drug ratio in ASD on disintegration and drug release of ASD tablets was systematically studied. Two hydrophilic polymers PVPVA and HPMC and one relatively hydrophobic polymer HPMCAS were evaluated. Dissolution testing was performed, and disintegration time was recorded during dissolution testing. As ASD loading increased, tablet disintegration time increased for all three polymer-based ASD tablets, and this effect was more pronounced for hydrophilic polymer-based ASD tablets. As polymer-drug ratio increased, tablet disintegration time increased for hydrophilic polymer-based ASD tablets, however, it remained short and largely unchanged for HPMCAS-based ASD tablets. Consequently, at high ASD loadings or high polymer-drug ratios, HPMCAS-based ASD tablets showed faster drug release than PVPVA- or HPMC-based ASD tablets. These results were attributed to the differences between polymer hydrophilicities and viscosities of polymer aqueous solutions. This work is valuable for understanding the disintegration and drug release of ASD tablets and provides insight to ASD composition selection from downstream tablet formulation perspective.


Assuntos
Polímeros , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Comprimidos
7.
J Pharm Sci ; 110(6): 2362-2371, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33652014

RESUMO

Constrained peptides (CPs) have emerged as attractive candidates for drug discovery and development. To fully unlock the therapeutic potential of CPs, it is crucial to understand their physical stability and minimize the formation of aggregates that could induce immune responses. Although amyloid like aggregates have been researched extensively, few studies have focused on aggregates from other peptide scaffolds (e.g., CPs). In this work, a streamlined approach to effectively profile the nature and formation pathway of CP aggregates was demonstrated. Aggregates of various sizes were detected and shown to be amorphous. Though no major changes were found in peptide structure upon aggregation, these aggregates appeared to have mixed natures, consisting of primarily non-covalent aggregates with a low level of covalent species. This co-existence phenomenon was also supported by two kinetic pathways observed in time- and temperature-dependent aggregation studies. Furthermore, a stability study with 8 additional peptide variants exhibited good correlation between aggregation propensity and peptide hydrophobicity. Therefore, a dual aggregation pathway was proposed, with the non-covalent aggregates driven by hydrophobic interactions, whereas the covalent ones formed through disulfide scrambling. Overall, the workflow presented here provides a powerful strategy for comprehensive characterization of peptide aggregates and understanding their mechanisms of formation.


Assuntos
Amiloide , Peptídeos , Dissulfetos , Interações Hidrofóbicas e Hidrofílicas , Fragmentos de Peptídeos
8.
Artigo em Inglês | MEDLINE | ID: mdl-27451254

RESUMO

Due to the inherent structure complexity and component heterogeneity of antibody drug conjugates (ADCs), separation technologies play a critical role in their characterization. In this review, we focus on chromatographic and electrophoretic approaches used to characterize ADCs with respect to drug-to-antibody ratio, drug distribution and conjugation sites, free small molecule drugs, charge variants, aggregates and fragments, etc. Chromatographic techniques including reversed-phase, ion exchange, size exclusion, hydrophobic interaction, two-dimensional liquid chromatography, and gas chromatography as well as capillary electrophoretic techniques including capillary electrophoresis sodium dodecyl sulfate, capillary zone electrophoresis and capillary isoelectric focusing are reviewed for their applications in the characterization of ADCs.


Assuntos
Cromatografia/métodos , Eletroforese/métodos , Imunoconjugados/química , Preparações Farmacêuticas/química , Animais , Cromatografia/instrumentação , Eletroforese/instrumentação , Humanos
9.
MAbs ; 8(4): 698-705, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26891281

RESUMO

Antibody-drug conjugates (ADCs) are complex therapeutic agents that use the specific targeting properties of antibodies and the highly potent cytotoxicity of small molecule drugs to selectively eliminate tumor cells while limiting the toxicity to normal healthy tissues. Two critical quality attributes of ADCs are the purity and stability of the active small molecule drug linked to the ADC, but these are difficult to assess once the drug is conjugated to the antibody. In this study, we report a enzyme deconjugation approach to cleave small molecule drugs from ADCs, which allows the drugs to be subsequently characterized by reversed-phase high performance liquid chromatography. The model ADC we used in this study utilizes a valine-citrulline linker that is designed to be sensitive to endoproteases after internalization by tumor cells. We screened several proteases to determine the most effective enzyme. Among the 3 cysteine proteases evaluated, papain had the best efficiency in cleaving the small molecule drug from the model ADC. The deconjugation conditions were further optimized to achieve complete cleavage of the small molecule drug. This papain deconjugation approach demonstrated excellent specificity and precision. The purity and stability of the active drug on an ADC drug product was evaluated and the major degradation products of the active drug were identified. The papain deconjugation method was also applied to several other ADCs, with the results suggesting it could be applied generally to ADCs containing a valine-citrulline linker. Our results indicate that the papain deconjugation method is a powerful tool for characterizing the active small molecule drug conjugated to an ADC, and may be useful in ensuring the product quality, efficacy and the safety of ADCs.


Assuntos
Anticorpos Monoclonais/análise , Antineoplásicos/análise , Imunoconjugados/análise , Papaína/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Humanos , Imunoconjugados/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-27212187

RESUMO

Antibody drug conjugates (ADCs) are complex therapeutic agents combining the selectivity of monoclonal antibodies and highly efficacious small molecule drugs to successfully eliminate tumor cells while limiting the general toxicity and side effects of the therapeutic to protect patient safety. One unique attribute critical to the safety of ADCs is the residual content of unconjugated small molecule drug present from either incomplete conjugation or degradation of the ADC. Typically for quality control assays, quantifying the amount of the free drug is performed through precipitation of the protein species using an organic solvent and then assaying the amount of free drug left in the supernatant. During the validation of an assay of this type for a maleimide based linker drug, issues were experienced with low and variable recovery in the spiked samples of the drug substance and drug product. A two-dimensional heart-cutting method coupling Size Exclusion Chromatography (SEC) with Reverse Phase (RP) chromatography was utilized to explore possible mechanisms leading to the low recovery of the free linker drug. The results of the investigation indicated that the spiked linker drug reacts with residual reactive groups on the ADC; a conclusion which was confirmed by the observed increase of average Drug to Antibody Ratio (DAR) determined by Hydrophobic Interaction Chromatography (HIC). Finally, several approaches were evaluated to minimize the recovery loss. Capping the residual reactive groups on the ADC with maleimide containing reagents effectively mitigated the low recovery issue.


Assuntos
Cromatografia em Gel/métodos , Cromatografia de Fase Reversa/métodos , Imunoconjugados/química , Interações Hidrofóbicas e Hidrofílicas , Maleimidas/química
11.
J Pharm Biomed Anal ; 117: 304-10, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26406314

RESUMO

Antibody-drug conjugates (ADCs) offer new therapeutic options for advanced cancer patients through precision killing with fewer side effects. The stability and efficacy of ADCs are closely related, emphasizing the urgency and importance of gaining a comprehensive understanding of ADC stability. In this work, a chemical de-conjugation approach was developed to investigate the in-situ stability of the small molecule drug while it is conjugated to the antibody. This method involves chemical-mediated release of the small molecule drug from the ADC and subsequent characterization of the released small molecule drug by HPLC. The feasibility of this technique was demonstrated utilizing a model ADC containing a disulfide linker that is sensitive to the reducing environment within cancer cells. Five reducing agents were screened for use in de-conjugation; tris(2-carboxyethyl) phosphine (TCEP) was selected for further optimization due to its high efficiency and clean impurity profile. The optimized de-conjugation assay was shown to have excellent specificity and precision. More importantly, it was shown to be stability indicating, enabling the identification and quantification of the small molecule drug and its degradation products under different formulation pHs and storage temperatures. In summary, the chemical de-conjugation strategy demonstrated here offers a powerful tool to assess the in-situ stability of small molecule drugs on ADCs and the resulting information will shed light on ADC formulation/process development and storage condition selection.


Assuntos
Anticorpos Monoclonais Humanizados/química , Química Farmacêutica/métodos , Imunoconjugados/química , Anticorpos Monoclonais Humanizados/análise , Estabilidade de Medicamentos , Humanos , Imunoconjugados/análise , Imunotoxinas/análise , Imunotoxinas/química
12.
Biochim Biophys Acta ; 1693(2): 135-46, 2004 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-15313015

RESUMO

We investigated G protein-stimulated release of ATP from human umbilical vein endothelial cells (HUVECs) using the G protein stimulant compound 48/80. Application of compound 48/80 resulted in dose-dependent ATP evolution from cultured HUVECs. This release was not cytotoxic as demonstrated by a lactate dehydrogenase assay and the ability of the cells to load and retain the viability dye calcein following stimulation. Mastoparan also stimulated release of ATP, further suggesting the process was G-protein initiated. This G protein was insensitive to pertussis toxin and appeared to be of the Gq-subtype. The ATP efflux was completely abolished in the presence of EGTA and thapsigargin signifying a strict Ca2+ dependence. Furthermore, compound 48/80-induced release was significantly decreased in cells pretreated with the phospholipase C inhibitor U73122. Thus, the release pathway appears to proceed through an increase in intracellular Ca2+ via PLC activation. Additionally, the G protein-initiated release was attenuated by pretreatment of the cells with either phorbol ester or indolactam V, both activators of protein kinase C. Finally, ATP release was not affected by treating HUVECs with nitric oxide synthase (NOS) inhibitors or glybenclamide.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Calcimicina/farmacologia , Cálcio/farmacologia , Linhagem Celular , Glibureto/farmacologia , Humanos , Óxido Nítrico/metabolismo , Proteína Quinase C/metabolismo , Espectrometria de Fluorescência , Fosfolipases Tipo C/metabolismo , Cordão Umbilical/citologia , p-Metoxi-N-metilfenetilamina/farmacologia
13.
Appl Spectrosc ; 59(4): 424-31, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15901327

RESUMO

We studied a mesoporous silica nanosphere (MSN) material with tunable release capability for drug delivery applications. We employed luciferase chemiluminescence imaging to investigate the kinetics and mechanism of the adenosine 5-triphosphate (ATP) release with various disulfide-reducing agents as uncapping triggers. ATP molecules were encapsulated within the MSNs by immersing dry nanospheres in aqueous solutions of ATP followed by capping of the mesopores with chemically removable caps, such as cadmium sulfide (CdS) nanoparticles and poly(amido amine) dendrimers (PAMAM), via a disulfide linkage. By varying the chemical nature of the ''cap'' and ''trigger'' molecules in our MSN system, we discovered that the release profiles could indeed be regulated in a controllable fashion.


Assuntos
Trifosfato de Adenosina/análise , Trifosfato de Adenosina/química , Preparações de Ação Retardada/análise , Preparações de Ação Retardada/química , Medições Luminescentes/métodos , Nanotubos/química , Nanotubos/ultraestrutura , Dióxido de Silício/química , Sistemas Computacionais , Difusão , Portadores de Fármacos/análise , Portadores de Fármacos/química , Teste de Materiais/métodos , Nanotubos/análise , Tamanho da Partícula , Porosidade , Água/química
14.
J Chromatogr A ; 1393: 81-8, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25818558

RESUMO

Antibody drug conjugates (ADCs) are complex therapeutic agents combining the specific targeting properties of antibodies and highly potent cytotoxic small molecule drugs to selectively eliminate tumor cells while limiting the toxicity to normal healthy tissues. One unique critical quality attribute of ADCs is the content of unconjugated small molecule drug present from either incomplete conjugation or degradation of the ADC. In this work, size exclusion chromatography (SEC) was coupled with reversed-phase (RP) HPLC in an online 2-dimensional chromatography format for identification and quantitation of unconjugated small molecule drugs and related small molecule impurities in ADC samples directly without sample preparation. The SEC method in the 1st dimension not only separated the small molecule impurities from the intact ADC, but also provided information about the size variants (monomer, dimer, aggregates, etc.) of the ADC. The small molecule peak from the SEC was trapped and sent to a RP-HPLC in the 2nd dimension to further separate and quantify the different small molecule impurities present in the ADC sample. This SEC-RP 2D-LC method demonstrated excellent precision (%RSD<2.0), linearity (r(2)=0.9999), sensitivity (LOQ of 0.05µg/mL of free drug in ADC sample) and accuracy (95-105% recovery of spiked samples). The 2D-LC method was further utilized to study the stability of an ADC drug product at different temperatures and pHs. Both small molecule degradation products and aggregation of the conjugate were observed in the stability samples and the degradation pathways of the ADC were investigated. This 2D-LC method offers a powerful tool for ADC characterization and provides valuable information for conjugation and formulation development.


Assuntos
Anticorpos/química , Antineoplásicos/química , Imunoconjugados/química , Cromatografia em Gel/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massas
15.
J Neurosci Methods ; 139(2): 145-52, 2004 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-15488226

RESUMO

The further understanding of neuronal function is imperative for the prevention and treatment of neurofunctional disorders. To aid in this realization, novel methods for monitoring neuronal cell function must be developed and characterized. In this study, we report the application of real-time imaging of luciferase-catalyzed ATP chemiluminescence for the investigation of ATP release from whole central nervous systems of the freshwater snail Lymnaea stagnalis. Release of ATP from Lymnaea ganglia varied among the different ganglia as well as within individual ganglia. Furthermore, the magnitude of ATP release varied following the stimulation of neurons with common neurotransmitters.


Assuntos
Trifosfato de Adenosina/metabolismo , Sistema Nervoso Central/metabolismo , Sistemas Computacionais , Lymnaea/fisiologia , Trifosfato de Adenosina/análise , Animais , Sistema Nervoso Central/química
16.
Anal Chim Acta ; 850: 92-6, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25441165

RESUMO

The detection and quantification of residual solvents present in clinical and commercial pharmaceutical products is necessary from both patient safety and regulatory perspectives. Head-space gas chromatography is routinely used for quantitation of residual solvents for small molecule APIs produced through synthetic processes; however residual solvent analysis is generally not needed for protein based pharmaceuticals produced through cultured cell lines where solvents are not introduced. In contrast, antibody drug conjugates and other protein conjugates where a drug or other molecule is covalently bound to a protein typically use solvents such as N,N-dimethylacetamide (DMA), N,N­dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or propylene glycol (PG) to dissolve the hydrophobic small molecule drug for conjugation to the protein. The levels of the solvent remaining following the conjugation step are therefore important to patient safety as these parental drug products are introduced directly into the patients bloodstream. We have developed a rapid sample preparation followed by a gas chromatography separation for the detection and quantification of several solvents typically used in these conjugation reactions. This generic method has been validated and can be easily implemented for use in quality control testing for clinical or commercial bioconjugated products.


Assuntos
Cromatografia Gasosa/métodos , Imunoconjugados/química , Solventes/isolamento & purificação , Contaminação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA