Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Cell Biol ; 137(1): 19-26, 1997 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-9105033

RESUMO

High mobility group 1 (HMG1) protein is an abundant and conserved component of vertebrate nuclei and has been proposed to play a structural role in chromatin organization, possibly similar to that of histone H1. However, a high abundance of HMG1 had also been reported in the cytoplasm and on the surface of mammalian cells. We conclusively show that HMG1 is a nuclear protein, since several different anti-HMG1 antibodies stain the nucleoplasm of cultured cells, and epitope-tagged HMG1 is localized in the nucleus only. The protein is excluded from nucleoli and is not associated to specific nuclear structures but rather appears to be uniformly distributed. HMG1 can bind in vitro to reconstituted core nucleosomes but is not stably associated to chromatin in live cells. At metaphase, HMG1 is detached from condensed chromosomes, contrary to histone H1. During interphase, HMG1 readily diffuses out of nuclei after permeabilization of the nuclear membranes with detergents, whereas histone H1 remains associated to chromatin. These properties exclude a shared function for HMG1 and H1 in differentiated cells, in spite of their similar biochemical properties. HMG1 may be stably associated only to a very minor population of nucleosomes or may interact transiently with nucleosomes during dynamic processes of chromatin remodeling.


Assuntos
Cromossomos/fisiologia , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Células 3T3/química , Células 3T3/fisiologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/imunologia , Galinhas , Cromossomos/química , Epitopos/análise , Epitopos/imunologia , Escherichia coli/genética , Proteínas de Grupo de Alta Mobilidade/imunologia , Histonas/análise , Histonas/imunologia , Histonas/metabolismo , Interfase/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Nucleossomos/metabolismo
2.
Curr Opin Genet Dev ; 5(5): 652-6, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8664554

RESUMO

An unusual property of ribosomal gene transcription is its marked species specificity. This results from distinct promoter-recognition properties of the RNA polymerase I transcription apparatus. The purification and functional characterization of TIF-IB/SL1, a promoter-recognition factor containing the TATA-binding protein, as well as the recent cloning of cDNAs encoding the three subunits (TAF(I)s) of the respective human and mouse factor, will facilitate the molecular analysis of the mechanisms underlying species-specific rDNA transcription and reveal how the basal transcriptional machinery has evolved.


Assuntos
DNA Ribossômico/genética , RNA Polimerase I/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Sequência Consenso , DNA Ribossômico/metabolismo , Humanos , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Especificidade da Espécie
3.
Oncogene ; 25(48): 6384-91, 2006 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17041624

RESUMO

The target of rapamycin (TOR) signal-transduction pathway is an important mechanism by which eucaryotic cells adjust their protein biosynthetic capacity to nutrient availability. Both in yeast and in mammals, the TOR pathway regulates the synthesis of ribosomal components, including transcription and processing of pre-rRNA, expression of ribosomal proteins and the synthesis of 5S rRNA. Expression of the genes encoding the numerous constituents of ribosomes requires transcription by all three classes of nuclear RNA polymerases. In this review, we summarize recent advances in understanding the interplay among nutrient availability, transcriptional control and ribosome biogenesis. We focus on transcription in response to nutrients, detailing the relevant downstream targets of TOR in yeast and mammals. The critical role of TOR in linking environmental queues to ribosome biogenesis provides an efficient means by which cells alter their overall protein biosynthetic capacity.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Quinases/metabolismo , Ribossomos/fisiologia , Transcrição Gênica , Animais , Divisão Celular , Núcleo Celular/enzimologia , DNA Polimerase I/genética , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/genética , Serina-Treonina Quinases TOR
4.
Mol Cell Biol ; 7(7): 2521-9, 1987 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-3649563

RESUMO

We have analyzed the sequences required for termination of human rDNA transcription. The human ribosomal transcription unit is shown to extend about 350 nucleotides into the 3'-terminal spacer and ends immediately upstream of a region with a distinct sequence heterogeneity. This heterogeneous region contains a cluster of conserved 10-base pair sequence elements which exert a striking homology to the proximal part of the 18-base pair murine rDNA transcription termination signal sequence, termed SalI box. Exonuclease III protection assays and in vitro transcription experiments with both homologous and heterologous human-mouse minigene constructs, and extracts from HeLa or Ehrlich ascites cells, reveal a functional analogy of the human sequence to the mouse SalI box. It mediates binding of a nuclear protein which functions as a transcription termination factor. The murine signal sequence is recognized by the human factor but not vice versa. The different sequence specificities and electrophoretic properties of the functionally equivalent protein factors suggest that a molecular coevolution has taken place between the termination signal sequences and the genes coding for the termination factors.


Assuntos
Evolução Biológica , DNA Ribossômico/genética , Genes Reguladores , Regiões Terminadoras Genéticas , Transcrição Gênica , Animais , Sequência de Bases , DNA Polimerase I/genética , Humanos , Camundongos , Precursores de Ácido Nucleico/genética , Sinais Direcionadores de Proteínas/genética , Precursores de RNA , RNA Ribossômico/genética , Especificidade da Espécie , Fatores de Transcrição/genética
5.
Mol Cell Biol ; 8(9): 3891-7, 1988 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-3221867

RESUMO

Termination of rRNA gene transcription is dependent on an 18-base-pair sequence motif, AGGTCGAC CAG AT TA NTCCG (the Sal box), which is present several times in the spacer region downstream of the 3' end of the pre-rRNA coding region. We report here the purification to molecular homogeneity of a nuclear factor which specifically interacts with the Sal box element. Addition of the isolated protein to S-100 extracts which contain low levels of the Sal box-binding protein and are therefore termination incompetent restores terminating activity, indicating that this protein is a polymerase I-specific transcription termination factor. The purified protein (termed TTFI) has a molecular weight of approximately 105,000 on sodium dodecyl sulfate-polyacrylamide gels. Mild proteolysis generates a relatively protease-resistant core which still specifically recognizes its target sequence. However, the termination activity has been lost, suggesting that the interaction with the DNA and the interaction with the transcription apparatus reside in different protein domains.


Assuntos
DNA Ribossômico/genética , Fatores de Terminação de Peptídeos/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Sequência de Bases , Carcinoma de Ehrlich/genética , Sistema Livre de Células , Humanos , Camundongos , Dados de Sequência Molecular , Fatores de Terminação de Peptídeos/isolamento & purificação , Plasmídeos , RNA Ribossômico/genética , Moldes Genéticos , Fatores de Transcrição/isolamento & purificação
6.
Mol Cell Biol ; 17(8): 4230-7, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9234680

RESUMO

The retinoblastoma susceptibility gene product pRb restricts cellular proliferation by affecting gene expression by all three classes of nuclear RNA polymerases. To elucidate the molecular mechanisms underlying pRb-mediated repression of ribosomal DNA (rDNA) transcription by RNA polymerase I, we have analyzed the effect of pRb in a reconstituted transcription system. We demonstrate that pRb, but not the related protein p107, acts as a transcriptional repressor by interfering with the assembly of transcription initiation complexes. The HMG box-containing transcription factor UBF is the main target for pRb-induced transcriptional repression. UBF and pRb form in vitro complexes involving the C-terminal part of pRb and HMG boxes 1 and 2 of UBF. We show that the interactions between UBF and TIF-IB and between UBF and RNA polymerase I, respectively, are not perturbed by pRb. However, the DNA binding activity of UBF to both synthetic cruciform DNA and the rDNA promoter is severely impaired in the presence of pRb. These studies reveal another mechanism by which pRb suppresses cell proliferation, namely, by direct inhibition of cellular rRNA synthesis.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Polimerase I/metabolismo , Proteína do Retinoblastoma/metabolismo , Transcrição Gênica/fisiologia , Animais , Proteínas de Transporte/metabolismo , DNA Ribossômico/química , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína HMGB1 , Proteínas de Grupo de Alta Mobilidade/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína p107 Retinoblastoma-Like , Fatores de Transcrição/metabolismo
7.
Mol Cell Biol ; 13(11): 6723-32, 1993 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8413268

RESUMO

Alterations in the rate of cell proliferation are accompanied by changes in the transcription of rRNA genes. In mammals, this growth-dependent regulation of transcription of genes coding for rRNA (rDNA) is due to reduction of the amount or activity of an essential transcription factor, called TIF-IA. Extracts prepared from quiescent cells lack this factor activity and, therefore, are transcriptionally inactive. We have purified TIF-IA from exponentially growing cells and have shown that it is a polypeptide with a molecular mass of 75 kDa which exists as a monomer in solution. Using a reconstituted transcription system consisting of purified transcription factors, we demonstrate that TIF-IA is a bona fide transcription initiation factor which interacts with RNA polymerase I. Preinitiation complexes can be assembled in the absence of TIF-IA, but formation of the first phosphodiester bonds of nascent rRNA is precluded. After initiation, TIF-IA is liberated from the initiation complex and facilitates transcription from templates bearing preinitiation complexes which lack TIF-IA. Despite the pronounced species specificity of class I gene transcription, this growth-dependent factor has been identified not only in mouse but also in human cells. Murine TIF-IA complements extracts from both growth-inhibited mouse and human cells. The analogous human activity appears to be similar or identical to that of TIF-IA. Therefore, despite the fact that the RNA polymerase transcription system has evolved sufficiently rapidly that an rDNA promoter from one species will not function in another species, the basic mechanisms that adapt ribosome synthesis to cell proliferation have been conserved.


Assuntos
DNA Ribossômico/metabolismo , Regulação Neoplásica da Expressão Gênica , Regiões Promotoras Genéticas , RNA Ribossômico/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Carcinoma de Ehrlich , Divisão Celular , Núcleo Celular/metabolismo , Cromatografia em Gel , Citoplasma/metabolismo , Eletroforese em Gel de Poliacrilamida , Genes MHC Classe I , Células HeLa , Humanos , Cinética , Camundongos , Moldes Genéticos , Fatores de Transcrição/isolamento & purificação , Células Tumorais Cultivadas
8.
Mol Cell Biol ; 21(17): 5806-14, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11486020

RESUMO

The "pocket" proteins pRb, p107, and p130 are a family of negative growth regulators. Previous studies have demonstrated that overexpression of pRb can repress transcription by RNA polymerase (Pol) I. To assess whether pRb performs this role under physiological conditions, we have examined pre-rRNA levels in cells from mice lacking either pRb alone or combinations of the three pocket proteins. Pol I transcription was unaffected in pRb-knockout fibroblasts, but specific disruption of the entire pRb family deregulated rRNA synthesis. Further analysis showed that p130 shares with pRb the ability to repress Pol I transcription, whereas p107 is ineffective in this system. Production of rRNA is abnormally elevated in Rb(-/-) p130(-/-) fibroblasts. Furthermore, overexpression of p130 can inhibit an rRNA promoter both in vitro and in vivo. This reflects an ability of p130 to bind and inactivate the upstream binding factor, UBF. The data imply that rRNA synthesis in living cells is subject to redundant control by endogenous pRb and p130.


Assuntos
Fosfoproteínas/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Proteínas , RNA Polimerase I/metabolismo , RNA Ribossômico/biossíntese , Proteína do Retinoblastoma/metabolismo , Células 3T3 , Animais , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Proteína do Retinoblastoma/genética , Proteína p107 Retinoblastoma-Like , Proteína p130 Retinoblastoma-Like , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
Nucleic Acids Res ; 29(2): 423-9, 2001 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11139612

RESUMO

Termination of murine rDNA transcription by RNA polymerase I (Pol I) requires pausing of Pol I by terminator-bound TTF-I (transcription termination factor for Pol I), followed by dissociation of the ternary complex by PTRF (Pol I and transcript release factor). To examine the functional correlation between transcription termination and initiation, we have compared transcription on terminator-containing and terminator-less rDNA templates. We demonstrate that terminated RNA molecules are more efficiently synthesized than run-off transcripts, indicating that termination facilitates reinitiation. Transcriptional enhancement is observed in multiple- but not single-round transcription assays measuring either promoter-dependent or promoter-independent Pol I transcription. Increased synthesis of terminated transcripts is observed in crude extracts but not in a PTRF-free reconstituted transcription system, indicating that PTRF-mediated release of pre-rRNA is responsible for transcriptional enhancement. Consistent with PTRF serving an important role in modulating the efficiency of rRNA synthesis, PTRF exhibits pronounced charge heterogeneity, is phosphorylated at multiple sites and fractionates into transcriptionally active and inactive forms. The results suggest that regulation of PTRF activity may be an as yet unrecognized means to control the efficiency of ribosomal RNA synthesis.


Assuntos
RNA Polimerase I/genética , Proteínas de Ligação a RNA/fisiologia , Ribossomos/genética , Transcrição Gênica , Células 3T3 , Animais , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Membrana , Camundongos , Fosforilação , RNA Polimerase I/biossíntese , RNA Polimerase I/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/enzimologia , Moldes Genéticos , Fatores de Transcrição
10.
Artigo em Inglês | MEDLINE | ID: mdl-9932453

RESUMO

All cells, from prokaryotes to vertebrates, synthesize vast amounts of ribosomal RNA to produce the several million new ribosomes per generation that are required to maintain the protein synthetic capacity of the daughter cells. Ribosomal gene (rDNA) transcription is governed by RNA polymerase I (Pol I) assisted by a dedicated set of transcription factors that mediate the specificity of transcription and are the targets of the pleiotrophic pathways the cell uses to adapt rRNA synthesis to cell growth. In the past few years we have begun to understand the specific functions of individual factors involved in rDNA transcription and to elucidate on a molecular level how transcriptional regulation is achieved. This article reviews our present knowledge of the molecular mechanism of rDNA transcriptional regulation.


Assuntos
DNA Ribossômico/genética , Regulação da Expressão Gênica , RNA Polimerase I/metabolismo , Transcrição Gênica , Animais , Sequência de Bases
11.
Oncogene ; 18(4): 1119-24, 1999 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-10023689

RESUMO

Induction of the tumor suppressor protein p53 restricts cellular proliferation. Since actively growing cells require the ongoing synthesis of ribosomal RNA to sustain cellular biosynthesis, we studied the effect of p53 on ribosomal gene transcription by RNA polymerase I (Pol I). We have measured rDNA transcriptional activity in different cell lines which either lack or overexpress p53 and demonstrate that wild-type but not mutant p53 inhibits cellular pre-rRNA synthesis. Conversely, pre-rRNA levels are elevated both in cells which express mutant p53 and in fibroblasts from p53 knock-out mice. Transient transfection assays with a set of rDNA deletion mutants demonstrate that intergenic spacer sequences are dispensable and the minimal rDNA promoter is sufficient for p53-mediated repression of Pol I transcription. However, in a cell-free transcription system, recombinant p53 does not inhibit rDNA transcription, indicating that p53 does not directly interfere with the basal Pol I transcriptional machinery. Thus, repression of Pol I transcription by p53 may be a consequence of p53-induced growth arrest.


Assuntos
DNA Ribossômico/genética , RNA Polimerase I/fisiologia , Precursores de RNA/biossíntese , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/fisiologia , Animais , DNA Ribossômico/metabolismo , Camundongos , Camundongos Knockout , Transcrição Gênica/fisiologia
12.
J Mol Biol ; 227(3): 635-47, 1992 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-1404380

RESUMO

Previously we have shown that nuclear extracts from mouse cells contain a heterogeneous group of polypeptides (p65, p80, p90, p100) which form distinct DNA-protein complexes on the 18 base-pair sequence element (termed Sal-box), which constitutes the murine rDNA transcription termination signal. These distinct proteins mediate cessation of RNA polymerase I (pol I) transcription elongation and release of the nascent RNA chains, indicating that they function as termination factor(s). Here, we report the biochemical analysis of the pol I-specific transcription termination factor TTFI. We show that the heterogeneity of TTFI is due to limited proteolysis of a larger, 130 kDa precursor protein (p130). The DNA-binding activity of p130 is strongly reduced as compared to the proteolytic derivatives, indicating that the DNA-binding domain is repressed within the full-length molecule. We have used limited proteolysis to purify and functionally characterize a TTFI core polypeptide (p50) which still specifically binds to the Sal-box target sequence and directs rDNA transcription termination. The equilibrium constant of purified p50 to bind specifically to DNA is 9 x 10(9) M-1. Additionally, we demonstrate that TTFI binds to DNA as a monomer and that binding induces DNA bending. This observation suggests that not only specific DNA-protein and protein-protein interactions but also conformational alterations of DNA may play a role in the termination process.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Oligodesoxirribonucleotídeos/metabolismo , RNA Polimerase I/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Animais , Sequência de Bases , Sítios de Ligação/genética , Células Cultivadas , Cromatografia em Gel , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/isolamento & purificação , Metilação , Camundongos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fatores de Transcrição/isolamento & purificação
13.
J Mol Biol ; 275(1): 43-53, 1998 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-9451438

RESUMO

Transcription initiation of ribosomal RNA genes requires RNA polymerase I (Pol I) and auxiliary factors which either bind directly to the rDNA promoter, e.g. TIF-IB/SL1 and UBF, or are assembled into productive transcription initiation complexes via interaction with Pol I, e.g. TIF-IA, and TIF-IC. Here we show that all components required for specific rDNA transcription initiation are capable of physical interaction with Pol I in the absence of DNA and can be co-immunoprecipitated with antibodies against defined subunits of murine Pol I. Sucrose gradient centrifugation and fractionation on gel filtration columns reveals that approximately 10% of cellular Pol I elutes as a defined complex with an apparent molecular mass of > 2000 kDa. The large Pol I complex contains saturating levels of TIF-IA, TIF-IB and UBF, but limiting amounts of TIF-IC. In support of the existence of a functional complex between Pol I and basal factors, the large complex is transcriptionally active after complementation with TIF-IC. The results suggest that, analogous to class II gene transcription, a pre-assembled complex, the "Pol I holoenzyme", exists that appears to be the initiation-competent form of Pol I.


Assuntos
Coenzimas/isolamento & purificação , Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Polimerase I/isolamento & purificação , Animais , Coenzimas/metabolismo , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade , Substâncias Macromoleculares , Camundongos , Peso Molecular , Testes de Precipitina , RNA Polimerase I/metabolismo , Soluções , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo
14.
J Mol Biol ; 268(2): 229-34, 1997 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-9159465

RESUMO

Termination of RNA polymerase I (Pol I) transcription requires the interaction of a specific DNA binding factor with terminator elements downstream of the pre-rRNA coding region. Both the terminator elements and the respective termination factors are distinct in yeast and mammals, and differences in the mechanism of transcription termination have been postulated. We have compared in vitro transcription termination of yeast and mouse Pol I using both the murine factor TTF-I, and the yeast homolog Reb1p. We show that, similar to TTF-I, Reb1p was sufficient for pausing of Pol I from either species, but was unable to cause release of the nascent transcripts from the paused ternary complex. The deficiency of Reb1p to mediate transcript release from Pol I of either species was complemented by the recently characterized murine release factor. Thus, both yeast and mouse Pol I termination requires a trans-acting factor that, in conjunction with the T-rich flanking sequence, releases the transcripts and Pol I from the template. The observation that the murine factor causes dissociation of ternary transcription complexes arrested by Reb1p suggests that the mechanism of Pol I termination is highly conserved from yeast to mammals.


Assuntos
Proteínas de Ligação a DNA/fisiologia , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/genética , Regiões Terminadoras Genéticas , Transcrição Gênica , Animais , Camundongos , RNA Mensageiro/metabolismo , Proteínas Recombinantes , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição
15.
J Mol Biol ; 284(1): 1-5, 1998 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-9811537

RESUMO

Entry into mitosis is accompanied by a global repression of transcription. To investigate the molecular mechanisms which shut-down rRNA synthesis during mitosis, we have compared RNA polymerase I (Pol I) transcription in extracts from asynchronous and mitotic HeLa cells. We show by several experimental approaches that phosphorylation by cdc2/cyclin B inactivates the TBP-containing factor SL1 and thus abrogates Pol I transcription during mitosis. This finding links the cell's cycle with the transcriptional activity of Pol I and suggests a common mechanism for mitotic silencing of all three classes of nuclear RNA polymerases, i.e. reversible inactivation of the respective TBP-TAF complexes by (a) mitotic kinase(s).


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mitose , Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Ribossômico/genética , Proteínas de Schizosaccharomyces pombe , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Extratos Celulares , Ciclina B/efeitos dos fármacos , Ciclina B/metabolismo , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacologia , Células HeLa/efeitos dos fármacos , Humanos , Camundongos , Nocodazol/farmacologia , Ácido Okadáico/farmacologia , Fosforilação , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Ribossômico/efeitos dos fármacos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Timidina/farmacologia , Fatores de Transcrição/isolamento & purificação
16.
J Mol Biol ; 243(5): 840-5, 1994 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-7966304

RESUMO

Basic mechanisms of transcription initiation are conserved from yeast to man. However, in contrast to genes transcribed by RNA polymerases II and III, ribosomal gene transcription by RNA polymerase I (Pol I) is species-specific. Promoter selectivity is mediated by SL1/TIF-IB, a multiprotein complex containing the TATA-binding protein (TBP) and TBP-associated factors (TAFs) which bind to DNA and nucleate the assembly of initiation complexes. Using a human cell line that expresses epitope-tagged yeast TBP, we have isolated a chimeric complex consisting of yeast TBP and human TAFs which faithfully promotes human rDNA transcription in vitro. This result argues that specific interactions between TBP and Pol I-specific TAFs have been evolutionarily conserved between distant species. In addition, this finding also underscores the importance of TAFs in determining promoter selectivity of Pol I.


Assuntos
Proteínas de Ligação a DNA/genética , RNA Polimerase I/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Proteínas de Xenopus , Western Blotting , Candida/genética , Linhagem Celular , Humanos , Homologia de Sequência de Aminoácidos , Proteína de Ligação a TATA-Box
17.
DNA Cell Biol ; 15(2): 167-73, 1996 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8634144

RESUMO

An intrinsic property of class I gene transcription by RNA polymerase I (Pol I) is the species specificity of the initiation reaction. Previous studies have demonstrated that species-specific rDNA promoter recognition is brought about by a TBP-TAF complex, termed TIF-IB in mouse and SL1 in man. We have compared the ability of affinity-purified TIF-IB and SL1 to direct transcription from the homologous rDNA template both in a reconstituted transcription system and in nuclear extracts prepared from mouse and human cells. We show that Pol I from both species and the individual transcription factors, with the exception of TIF-IB/SL1, are functionally interchangeable in the reconstituted transcription system containing purified proteins. In nuclear extracts, however, species-specific differences are obvious. Whereas SL1 reprograms a heterologous mouse extract to recognize the human promoter, TIF-IB fails to reprogram a human extract unless it is complemented with mouse Pol I. Crude human, but not mouse, Pol I exhibits species-specific differences that disappear after purification. We propose that in extracts and less purified fractions human Pol I exists as 'holoenzyme' containing associated protein(s) that prevent assembly of TIF-IB-directed initiation complexes at the murine rDNA promoter.


Assuntos
DNA Ribossômico/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica , Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Polimerase I/metabolismo , RNA Ribossômico/biossíntese , Fatores de Transcrição/fisiologia , Transcrição Gênica , Animais , Fatores Biológicos/fisiologia , Núcleo Celular/química , Sistema Livre de Células , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , RNA Ribossômico/genética , Especificidade da Espécie
18.
Cell Death Differ ; 20(11): 1455-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23764776

RESUMO

The nucleolus is implicated in sensing and responding to cellular stress by stabilizing p53. The pro-apoptotic effect of p53 is associated with several neurodegenerative disorders, including Huntington's disease (HD), which is characterized by the progressive loss of medium spiny neurons (MSNs) in the striatum. Here we show that disruption of nucleolar integrity and function causes nucleolar stress and is an early event in MSNs of R6/2 mice, a transgenic model of HD. Targeted perturbation of nucleolar function in MSNs by conditional knockout of the RNA polymerase I-specific transcription initiation factor IA (TIF-IA) leads to late progressive striatal degeneration, HD-like motor abnormalities and molecular signatures. Significantly, p53 prolongs neuronal survival in TIF-IA-deficient MSNs by transient upregulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor that inhibits mammalian target of rapamycin signaling and induces autophagy. The results emphasize the initial role of nucleolar stress in neurodegeneration and uncover a p53/PTEN-dependent neuroprotective response.


Assuntos
Nucléolo Celular/patologia , Corpo Estriado/patologia , Animais , Nucléolo Celular/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/biossíntese , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais , Estresse Fisiológico , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-21502405

RESUMO

Alternative transcription of the same gene in sense and antisense orientation regulates expression of protein-coding genes. Here we show that noncoding RNA (ncRNA) in sense and antisense orientation also controls transcription of rRNA genes (rDNA). rDNA exists in two types of chromatin--a euchromatic conformation that is permissive to transcription and a heterochromatic conformation that is transcriptionally silent. Silencing of rDNA is mediated by NoRC, a chromatin-remodeling complex that triggers heterochromatin formation. NoRC function requires RNA that is complementary to the rDNA promoter (pRNA). pRNA forms a DNA:RNA triplex with a regulatory element in the rDNA promoter, and this triplex structure is recognized by DNMT3b. The results imply that triplex-mediated targeting of DNMT3b to specific sequences may be a common pathway in epigenetic regulation. We also show that rDNA is transcribed in antisense orientation. The level of antisense RNA (asRNA) is down-regulated in cancer cells and up-regulated in senescent cells. Ectopic asRNA triggers trimethylation of histone H4 at lysine 20 (H4K20me3), suggesting that antisense transcripts guide the histone methyltransferase Suv4-20 to rDNA. The results reveal that noncoding RNAs in sense and antisense orientation are important determinants of the epigenetic state of rDNA.


Assuntos
Epigênese Genética , Genes de RNAr/genética , RNA Antissenso/metabolismo , RNA não Traduzido/metabolismo , Acetilação , Animais , Nucléolo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Intergênico/genética , Regulação para Baixo/genética , Camundongos , Complexos Multiproteicos/metabolismo , Células NIH 3T3 , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Estabilidade de RNA/genética , RNA Antissenso/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA