Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Bacteriol ; 205(9): e0017123, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37655914

RESUMO

Staphylococcus aureus is an important human pathogen responsible for a variety of infections including skin and soft tissue infections, endocarditis, and sepsis. The combination of increasing antibiotic resistance in this pathogen and the lack of an efficacious vaccine underscores the importance of understanding how S. aureus maintains metabolic homeostasis in a variety of environments, particularly during infection. Within the host, S. aureus must regulate cellular levels of the cofactor heme to support enzymatic activities without encountering heme toxicity. Glutamyl tRNA reductase (GtrR), the enzyme catalyzing the first committed step in heme synthesis, is an important regulatory node of heme synthesis in Bacteria, Archaea, and Plantae. In many organisms, heme status negatively regulates the abundance of GtrR, controlling flux through the heme synthesis pathway. We identified two residues within GtrR, H32 and R214, that are important for GtrR-heme binding. However, in strains expressing either GtrRH32A or GtrRR214A, heme homeostasis was not perturbed, suggesting an alternative mechanism of heme synthesis regulation occurs in S. aureus. In this regard, we report that heme synthesis is regulated through phosphorylation and dephosphorylation of GtrR by the serine/threonine kinase Stk1 and the phosphatase Stp1, respectively. Taken together, these results suggest that the mechanisms governing staphylococcal heme synthesis integrate both the availability of heme and the growth status of the cell. IMPORTANCE Staphylococcus aureus represents a significant threat to human health. Heme is an iron-containing enzymatic cofactor that can be toxic at elevated levels. During infection, S. aureus must control heme levels to replicate and survive within the hostile host environment. We identified residues within a heme biosynthetic enzyme that are critical for heme binding in vitro; however, abrogation of heme binding is not sufficient to perturb heme homeostasis within S. aureus. This marks a divergence from previously reported mechanisms of heme-dependent regulation of the highly conserved enzyme glutamyl tRNA reductase (GtrR). Additionally, we link cell growth arrest to the modulation of heme levels through the post-translational regulation of GtrR by the kinase Stk1 and the phosphatase Stp1.


Assuntos
Heme , Infecções Estafilocócicas , Humanos , Heme/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Homeostase , Monoéster Fosfórico Hidrolases/metabolismo , Infecções Estafilocócicas/microbiologia
2.
PLoS Pathog ; 17(10): e1009881, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34624065

RESUMO

Pathogenic bacteria rely on protein phosphorylation to adapt quickly to stress, including that imposed by the host during infection. Penicillin-binding protein and serine/threonine-associated (PASTA) kinases are signal transduction systems that sense cell wall integrity and modulate multiple facets of bacterial physiology in response to cell envelope stress. The PASTA kinase in the cytosolic pathogen Listeria monocytogenes, PrkA, is required for cell wall stress responses, cytosolic survival, and virulence, yet its substrates and downstream signaling pathways remain incompletely defined. We combined orthogonal phosphoproteomic and genetic analyses in the presence of a ß-lactam antibiotic to define PrkA phosphotargets and pathways modulated by PrkA. These analyses synergistically highlighted ReoM, which was recently identified as a PrkA target that influences peptidoglycan (PG) synthesis, as an important phosphosubstrate during cell wall stress. We find that deletion of reoM restores cell wall stress sensitivities and cytosolic survival defects of a ΔprkA mutant to nearly wild-type levels. While a ΔprkA mutant is defective for PG synthesis during cell wall stress, a double ΔreoM ΔprkA mutant synthesizes PG at rates similar to wild type. In a mouse model of systemic listeriosis, deletion of reoM in a ΔprkA background almost fully restored virulence to wild-type levels. However, loss of reoM alone also resulted in attenuated virulence, suggesting ReoM is critical at some points during pathogenesis. Finally, we demonstrate that the PASTA kinase/ReoM cell wall stress response pathway is conserved in a related pathogen, methicillin-resistant Staphylococcus aureus. Taken together, our phosphoproteomic analysis provides a comprehensive overview of the PASTA kinase targets of an important model pathogen and suggests that a critical role of PrkA in vivo is modulating PG synthesis through regulation of ReoM to facilitate cytosolic survival and virulence.


Assuntos
Parede Celular/fisiologia , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Peptidoglicano/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Listeriose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Virulência
3.
Proc Natl Acad Sci U S A ; 116(44): 21980-21982, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611408

RESUMO

Siderophores, iron-scavenging small molecules, are fundamental to bacterial nutrient metal acquisition and enable pathogens to overcome challenges imposed by nutritional immunity. Multimodal imaging mass spectrometry allows visualization of host-pathogen iron competition, by mapping siderophores within infected tissue. We have observed heterogeneous distributions of Staphylococcus aureus siderophores across infectious foci, challenging the paradigm that the vertebrate host is a uniformly iron-depleted environment to invading microbes.


Assuntos
Sideróforos/análise , Staphylococcus aureus/patogenicidade , Abscesso/microbiologia , Animais , Citratos/análise , Interações Hospedeiro-Patógeno , Ferro/metabolismo , Camundongos , Ornitina/análogos & derivados , Ornitina/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia
4.
Nat Commun ; 13(1): 1491, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314695

RESUMO

HitRS is a two-component system that responds to cell envelope damage in the human pathogen Bacillus anthracis. Here we identify an RNA-binding protein, KrrA, that regulates HitRS function by modulating the stability of the hitRS mRNA. In addition to hitRS, KrrA binds to over 70 RNAs and, directly or indirectly, affects the expression of over 150 genes involved in multiple processes, including genetic competence, sporulation, RNA turnover, DNA repair, transport, and cellular metabolism. KrrA does not exhibit detectable nuclease activity in vitro, and thus the mechanism by which it modulates mRNA stability remains unclear.


Assuntos
Bacillus anthracis , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Cell Chem Biol ; 29(7): 1209-1217.e4, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35654040

RESUMO

Bacterial pathogens have evolved virulence factors to colonize, replicate, and disseminate within the vertebrate host. Although there is an expanding body of literature describing how bacterial pathogens regulate their virulence repertoire in response to environmental signals, it is challenging to directly visualize virulence response within the host tissue microenvironment. Multimodal imaging approaches enable visualization of host-pathogen molecular interactions. Here we demonstrate multimodal integration of high spatial resolution imaging mass spectrometry and microscopy to visualize Staphylococcus aureus envelope modifications within infected murine and human tissues. Data-driven image fusion of fluorescent bacterial reporters and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance imaging mass spectrometry uncovered S. aureus lysyl-phosphatidylglycerol lipids, localizing to select bacterial communities within infected tissue. Absence of lysyl-phosphatidylglycerols is associated with decreased pathogenicity during vertebrate colonization as these lipids provide protection against the innate immune system. The presence of distinct staphylococcal lysyl-phosphatidylglycerol distributions within murine and human infections suggests a heterogeneous, spatially oriented microbial response to host defenses.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Humanos , Camundongos , Imagem Multimodal , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Infecções Estafilocócicas/diagnóstico por imagem , Infecções Estafilocócicas/microbiologia , Fatores de Virulência
6.
mBio ; 10(1)2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808698

RESUMO

Manganese (Mn) is an essential micronutrient critical for the pathogenesis of Staphylococcus aureus, a significant cause of human morbidity and mortality. Paradoxically, excess Mn is toxic; therefore, maintenance of intracellular Mn homeostasis is required for survival. Here we describe a Mn exporter in S. aureus, MntE, which is a member of the cation diffusion facilitator (CDF) protein family and conserved among Gram-positive pathogens. Upregulation of mntE transcription in response to excess Mn is dependent on the presence of MntR, a transcriptional repressor of the mntABC Mn uptake system. Inactivation of mntE or mntR leads to reduced growth in media supplemented with Mn, demonstrating MntE is required for detoxification of excess Mn. Inactivation of mntE results in elevated levels of intracellular Mn, but reduced intracellular iron (Fe) levels, supporting the hypothesis that MntE functions as a Mn efflux pump and Mn efflux influences Fe homeostasis. Strains inactivated for mntE are more sensitive to the oxidants NaOCl and paraquat, indicating Mn homeostasis is critical for resisting oxidative stress. Furthermore, mntE and mntR are required for full virulence of S. aureus during infection, suggesting S. aureus experiences Mn toxicity in vivo Combined, these data support a model in which MntR controls Mn homeostasis by balancing transcriptional repression of mntABC and induction of mntE, both of which are critical for S. aureus pathogenesis. Thus, Mn efflux contributes to bacterial survival and virulence during infection, establishing MntE as a potential antimicrobial target and expanding our understanding of Mn homeostasis.IMPORTANCE Manganese (Mn) is generally viewed as a critical nutrient that is beneficial to pathogenic bacteria due to its function as an enzymatic cofactor and its capability of acting as an antioxidant; yet paradoxically, high concentrations of this transition metal can be toxic. In this work, we demonstrate Staphylococcus aureus utilizes the cation diffusion facilitator (CDF) family protein MntE to alleviate Mn toxicity through efflux of excess Mn. Inactivation of mntE leads to a significant reduction in S. aureus resistance to oxidative stress and S. aureus-mediated mortality within a mouse model of systemic infection. These results highlight the importance of MntE-mediated Mn detoxification in intracellular Mn homeostasis, resistance to oxidative stress, and S. aureus virulence. Therefore, this establishes MntE as a potential target for development of anti-S. aureus therapeutics.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Manganês/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Proteínas de Transporte de Cátions/genética , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Homeostase , Ferro/metabolismo , Manganês/toxicidade , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Virulência/efeitos dos fármacos
7.
Microbiol Spectr ; 6(6)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30547858

RESUMO

Staphylococcus aureus is one of the most important human pathogens that is responsible for a variety of diseases ranging from skin and soft tissue infections to endocarditis and sepsis. In recent decades, the treatment of staphylococcal infections has become increasingly difficult as the prevalence of multi-drug resistant strains continues to rise. With increasing mortality rates and medical costs associated with drug resistant strains, there is an urgent need for alternative therapeutic options. Many innovative strategies for alternative drug development are being pursued, including disruption of biofilms, inhibition of virulence factor production, bacteriophage-derived antimicrobials, anti-staphylococcal vaccines, and light-based therapies. While many compounds and methods still need further study to determine their feasibility, some are quickly approaching clinical application and may be available in the near future.


Assuntos
Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/uso terapêutico , Anticorpos Antibacterianos/farmacologia , Bacteriófagos/fisiologia , Biofilmes/efeitos dos fármacos , Descoberta de Drogas , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Terapia por Fagos/métodos , Fotoquimioterapia/métodos , Percepção de Quorum/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Virulência/efeitos dos fármacos , Fatores de Virulência
8.
mBio ; 9(1)2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437922

RESUMO

Staphylococcus aureus is responsible for a significant amount of devastating disease. Its ability to colonize the host and cause infection is supported by a variety of proteins that are dependent on the cofactor heme. Heme is a porphyrin used broadly across kingdoms and is synthesized de novo from common cellular precursors and iron. While heme is critical to bacterial physiology, it is also toxic in high concentrations, requiring that organisms encode regulatory processes to control heme homeostasis. In this work, we describe a posttranscriptional regulatory strategy in S. aureus heme biosynthesis. The first committed enzyme in the S. aureus heme biosynthetic pathway, glutamyl-tRNA reductase (GtrR), is regulated by heme abundance and the integral membrane protein HemX. GtrR abundance increases dramatically in response to heme deficiency, suggesting a mechanism by which S. aureus responds to the need to increase heme synthesis. Additionally, HemX is required to maintain low levels of GtrR in heme-proficient cells, and inactivation of hemX leads to increased heme synthesis. Excess heme synthesis in a ΔhemX mutant activates the staphylococcal heme stress response, suggesting that regulation of heme synthesis is critical to reduce self-imposed heme toxicity. Analysis of diverse organisms indicates that HemX is widely conserved among heme-synthesizing bacteria, suggesting that HemX is a common factor involved in the regulation of GtrR abundance. Together, this work demonstrates that S. aureus regulates heme synthesis by modulating GtrR abundance in response to heme deficiency and through the activity of the broadly conserved HemX.IMPORTANCEStaphylococcus aureus is a leading cause of skin and soft tissue infections, endocarditis, bacteremia, and osteomyelitis, making it a critical health care concern. Development of new antimicrobials against S. aureus requires knowledge of the physiology that supports this organism's pathogenesis. One component of staphylococcal physiology that contributes to growth and virulence is heme. Heme is a widely utilized cofactor that enables diverse chemical reactions across many enzyme families. S. aureus relies on many critical heme-dependent proteins and is sensitive to excess heme toxicity, suggesting S. aureus must maintain proper intracellular heme homeostasis. Because S. aureus provides heme for heme-dependent enzymes via synthesis from common precursors, we hypothesized that regulation of heme synthesis is one mechanism to maintain heme homeostasis. In this study, we identify that S. aureus posttranscriptionally regulates heme synthesis by restraining abundance of the first heme biosynthetic enzyme, GtrR, via heme and the broadly conserved membrane protein HemX.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Heme/biossíntese , Metiltransferases/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Expressão Gênica , Metiltransferases/genética
9.
Parasit Vectors ; 11(1): 507, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201046

RESUMO

BACKGROUND: Moose (Alces alces) are a culturally and economically valued species in Minnesota. However, the moose population has experienced a sudden, marked decline in their range, including extirpation in the northwest and a 66% decline in the last decade in the northeast portions of the state. Although the exact cause of this decline is unclear, parasitic metastrongylid and filarioid nematode infections are known causes of morbidity and mortality in moose across North America. METHODS: To determine if these parasitic nematodes could be contributing to the Minnesota moose population decline, we molecularly examined banked tissues obtained from moose that died of known and unknown causes for the presence of nematode DNA. Extracted brain DNA of 34 individual moose was amplified utilizing primers targeting the 18S rRNA gene and internal transcribed spacer regions of nematodes. RESULTS: DNA sequencing revealed that PCR products obtained from 15 (44.1%) of the moose were 99% identical to Parelaphostrongylus tenuis, a metastrongylid known to cause neurological disease and death. Additionally, brain tissue from 20 (58.8%) individuals yielded sequences that most closely aligned with Elaeophora schneideri, a parasite associated with neurological impairment but previously unreported in Minnesota. Setaria yehi, a common filarioid parasite of deer, was also detected in the brain tissue of 5 (14.7%) moose. Molecular screening of 618 captured tabanid flies from four trapping sites revealed E. schneideri was present (6%) in the Minnesota environment and transmission could occur locally. Prevalence rates among the flies ranged between 0-100% per trapping site, with Chrysops spp. and Hybomitra spp. implicated as the vectors. CONCLUSIONS: Ultimately, these data confirm that P. tenuis is widespread in the Minnesota moose population and raises the question of the significance of E. schneideri as a contributing factor to morbidity and mortality in moose.


Assuntos
Cervos/parasitologia , Dípteros/parasitologia , Filariose/veterinária , Filarioidea/isolamento & purificação , Metastrongyloidea/isolamento & purificação , Infecções por Strongylida/veterinária , Animais , Feminino , Filariose/epidemiologia , Filariose/parasitologia , Filarioidea/genética , Insetos Vetores/parasitologia , Masculino , Metastrongyloidea/genética , Minnesota/epidemiologia , Filogenia , Reação em Cadeia da Polimerase/veterinária , Prevalência , Análise de Sequência de DNA/veterinária , Infecções por Strongylida/epidemiologia , Infecções por Strongylida/parasitologia
10.
Sci Transl Med ; 10(432)2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540616

RESUMO

Diseases are characterized by distinct changes in tissue molecular distribution. Molecular analysis of intact tissues traditionally requires preexisting knowledge of, and reagents for, the targets of interest. Conversely, label-free discovery of disease-associated tissue analytes requires destructive processing for downstream identification platforms. Tissue-based analyses therefore sacrifice discovery to gain spatial distribution of known targets or sacrifice tissue architecture for discovery of unknown targets. To overcome these obstacles, we developed a multimodality imaging platform for discovery-based molecular histology. We apply this platform to a model of disseminated infection triggered by the pathogen Staphylococcus aureus, leading to the discovery of infection-associated alterations in the distribution and abundance of proteins and elements in tissue in mice. These data provide an unbiased, three-dimensional analysis of how disease affects the molecular architecture of complex tissues, enable culture-free diagnosis of infection through imaging-based detection of bacterial and host analytes, and reveal molecular heterogeneity at the host-pathogen interface.


Assuntos
Imagem Molecular/métodos , Staphylococcus aureus/metabolismo , Animais , Feminino , Interações Hospedeiro-Patógeno , Imageamento por Ressonância Magnética , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia
11.
Parasit Vectors ; 9(1): 450, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27519789

RESUMO

BACKGROUND: Moose (Alces alces) are a culturally and economically valued species in Minnesota, where the northeast population has decreased by 60 % since 2006. The cause of the decline is currently unclear; however, parasites, predation, and climate change have all been implicated. Nematode parasites are important pathogens in North American moose, potentially causing severe disease and mortality. Recent spread of Rumenfilaria andersoni, a filarioid nematode of moose, has been documented in Finnish cervids; however, little is known about the epidemiology of this parasite in North America. METHODS: To investigate the prevalence and distribution of R. andersoni, 584 blood samples were collected from live-captured and dead animals and screened microscopically for the presence of microfilariae using a modified Knott's test. Microfilariae were identified based on morphological characteristics. A subset of Knott's-positive animals was subjected to polymerase chain reaction (PCR) with filarioid-specific primers targeting the first internal transcribed spacer region (ITS-1) of the rRNA gene cluster. RESULTS: Rumenfilaria microfilariae were present in 20.5 % of Minnesota moose (n = 352), with slight fluctuations observed over four years. Minnesota white-tailed deer (Odocoileus virginianus) (n = 2) and moose (n = 44) from Alaska, Montana, Washington, Maine, and New Hampshire also harbored R. andersoni, suggesting this parasite occurs widely throughout North American moose herds, and white-tailed deer can serve as a patent host. Sequence analysis of cervid blood (moose, n = 15; white-tailed deer, n = 1) confirmed the identity of R. andersoni and revealed the existence of two distinct clades. Genetic comparisons of R. andersoni isolates from North America and semi-domesticated Finnish reindeer found the two groups to be closely related, supporting previous hypotheses that R. andersoni was recently introduced into Finland by the importation of deer from the United States. CONCLUSIONS: To the best of our knowledge these observations represent the first report of R. andersoni within the contiguous United States and reveal this nematode as a common parasite of North American moose and white-tailed deer. Although the implications of R. andersoni infection on moose health is unclear, increased awareness of this parasite will help prevent unintentional introduction of R. andersoni into naïve populations via the translocation of wild and captive cervids.


Assuntos
Cervos/parasitologia , Filariose/veterinária , Filarioidea/isolamento & purificação , Animais , Sangue/parasitologia , Análise por Conglomerados , DNA de Helmintos/química , DNA de Helmintos/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Filariose/epidemiologia , Filariose/parasitologia , Finlândia , Microscopia , América do Norte/epidemiologia , Filogenia , Reação em Cadeia da Polimerase , Prevalência , Análise de Sequência de DNA
12.
Vet Parasitol ; 205(3-4): 697-701, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25260332

RESUMO

A two-year-old male, neutered, basset hound-beagle mix with progressive neurological impairment was examined postmortem. Grossly, the dog had multiple raised masses on the spinal cord between nerve roots. Microscopically, the dog had protozoal myeloencephalitis. Toxoplasma gondii and Sarcocystis neurona were detected in the CNS by immunohistochemistry and polymerase chain reaction (PCR). Sarcocysts in formalin-fixed muscle were negative for Sarcocystis by PCR. Banked serum was negative for T. gondii using the modified agglutination test, suggesting an acute case of T. gondii infection or immunosuppression; however, no predisposing immunosuppressive diseases, including canine distemper, were found. To the authors' knowledge, this is the first report of dual T. gondii and S. neurona infection in a dog.


Assuntos
Doenças do Cão/diagnóstico , Encefalomielite/veterinária , Sarcocystis/isolamento & purificação , Sarcocistose/veterinária , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/diagnóstico , Doença Aguda , Testes de Aglutinação/veterinária , Animais , Anticorpos Antiprotozoários/líquido cefalorraquidiano , Coinfecção/veterinária , DNA de Protozoário/líquido cefalorraquidiano , Doenças do Cão/parasitologia , Doenças do Cão/patologia , Cães , Encefalomielite/diagnóstico , Encefalomielite/parasitologia , Evolução Fatal , Imuno-Histoquímica/veterinária , Masculino , Reação em Cadeia da Polimerase/veterinária , Sarcocystis/genética , Sarcocystis/imunologia , Sarcocistose/diagnóstico , Sarcocistose/patologia , Medula Espinal/patologia , Toxoplasma/genética , Toxoplasma/imunologia , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA