Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Resist Updat ; 71: 101007, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741091

RESUMO

Therapy resistance has long been considered to occur through the selection of pre-existing clones equipped to survive and quickly regrow, or through the acquisition of mutations during chemotherapy. Here we show that following in vitro treatment by chemotherapy, epithelial breast cancer cells adopt a transient drug tolerant phenotype characterized by cell cycle arrest, epithelial-to-mesenchymal transition (EMT) and the reversible upregulation of the multidrug resistance (MDR) efflux transporter P-glycoprotein (P-gp). The drug tolerant persister (DTP) state is reversible, as cells eventually resume proliferation, giving rise to a cell population resembling the initial, drug-naïve cell lines. However, recovery after doxorubicin treatment is almost completely eliminated when DTP cells are cultured in the presence of the P-gp inhibitor Tariquidar. Mechanistically, P-gp contributes to the survival of DTP cells by removing reactive oxygen species-induced lipid peroxidation products resulting from doxorubicin exposure. In vivo, prolonged administration of Tariquidar during doxorubicin treatment holidays resulted in a significant increase of the overall survival of Brca1-/-;p53-/- mammary tumor bearing mice. These results indicate that prolonged administration of a P-gp inhibitor during drug holidays would likely benefit patients without the risk of aggravated side effects related to the concomitantly administered toxic chemotherapy. Effective targeting of DTPs through the inhibition of P-glycoprotein may result in a paradigm shift, changing the focus from countering drug resistance mechanisms to preventing or delaying therapy resistance.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Peroxidação de Lipídeos , Preparações Farmacêuticas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Doxorrubicina/farmacologia
2.
Br J Cancer ; 128(10): 1850-1861, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36918717

RESUMO

BACKGROUND: No targeted drugs are currently available against small cell lung cancer (SCLC). BCL-2 family members are involved in apoptosis regulation and represent therapeutic targets in many malignancies. METHODS: Expression of BCL-2 family members in 27 SCLC cell lines representing all known four SCLC molecular subtypes was assessed by qPCR, Western blot and mass spectrometry-based proteomics. BCL-2 and MCL-1 inhibition (venetoclax and S63845, respectively) was assessed by MTT assay and flow cytometry and in mice bearing human SCLC tumours. Drug interactions were calculated using the Combenefit software. Ectopic BAX overexpression was achieved by expression plasmids. RESULTS: The highest BCL-2 expression levels were detected in ASCL1- and POU2F3-driven SCLC cells. Although sensitivity to venetoclax was reflected by BCL-2 levels, not all cell lines responded consistently despite their high BCL-2 expression. MCL-1 overexpression and low BAX levels were both characteristic for venetoclax resistance in SCLC, whereas the expression of other BCL-2 family members did not affect therapeutic efficacy. Combination of venetoclax and S63845 resulted in significant, synergistic in vitro and in vivo anti-tumour activity and apoptosis induction in double-resistant cells; however, this was seen only in a subset with detectable BAX. In non-responding cells, ectopic BAX overexpression sensitised to venetoclax and S63845 and, furthermore, induced synergistic drug interaction. CONCLUSIONS: The current study reveals the subtype specificity of BCL-2 expression and sheds light on the mechanism of venetoclax resistance in SCLC. Additionally, we provide preclinical evidence that combined BCL-2 and MCL-1 targeting is an effective approach to overcome venetoclax resistance in high BCL-2-expressing SCLCs with intact BAX.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Carcinoma de Pequenas Células do Pulmão , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética
3.
Mutagenesis ; 38(4): 227-237, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37418160

RESUMO

The aim of this study was to investigate if age and body mass of humans have an impact on the DNA-damaging properties of high-frequency mobile phone-specific electromagnetic fields (HF-EMF, 1950 MHz, universal mobile telecommunications system, UMTS signal) and if this form of radiation has an impact on the genotoxic effects of occupationally relevant exposures. Pooled peripheral blood mononuclear cells (PBMC) from three groups [young normal weight, young obese (YO), and older age normal weight individuals] were exposed to different doses of HF-EMF (0.25, 0.5, and 1.0 W/kg specific absorption rate-SAR) and simultaneously or sequentially to different chemicals which cause DNA damage (CrO3, NiCl2, benzo[a]pyrene diol epoxide-BPDE, and 4-nitroquinoline 1-oxide-4NQO) via different molecular mechanisms. We found no difference in regard to the background values in the three groups but a significant increase of DNA damage (81% without and 36% with serum) in cells from old participants after radiation with 1.0 W/kg SAR 16 h. In combined treatment experiments we found no impact of the UMTS signal on chemically induced DNA damage in the different groups in general. However, a moderate decrease of DNA damage was seen in simultaneous treatment experiments with BPDE and 1.0 W/kg SAR in the YO group (decline 18%). Taken together our findings indicate that HF-EMF cause DNA damage in PBMC from older subjects (69.1 years). Furthermore, they show that the radiation does not increase induction of DNA damage by occupationally relevant chemicals.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Humanos , Campos Eletromagnéticos/efeitos adversos , Leucócitos Mononucleares , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido , Dano ao DNA , Demografia
4.
BMC Cancer ; 22(1): 1197, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403011

RESUMO

PURPOSE: The prognostic value of pretreatment and preoperative fibrinogen plasma levels and the modified Glasgow prognostic score (mGPS) in stage III/N2 non-small cell lung cancer (NSCLC) patients who receive neoadjuvant treatment followed by radical surgery is yet unclear. METHODS: Fibrinogen levels and mGPS of 84 patients with initial stage III/N2 NSCLC, who received neoadjuvant therapy followed by complete surgical resection from 2002 to 2014 were retrospectively analyzed and correlated with clinical parameters and overall survival (OS). Data were analyzed using log-rank and Cox regression analysis adjusted for clinical and pathological factors. RESULTS: Median serum fibrinogen level after neoadjuvant treatment was 439 mg/dL (IQR 158 mg/dL). Elevated fibrinogen levels (> 400 mg/dL) after neoadjuvant treatment were significantly associated with poorer OS (28.2 months vs. 60.9 months, HR 0.562, p = 0.048). Importantly, a decrease in fibrinogen levels after neoadjuvant treatment (n = 34) was found to be an independent predictor for favorable OS in multivariate analysis (HR 0.994, p = 0.025). Out of 80 patients, 55, 19 and 6 patients had a mGPS of 0, 1 and 2, respectively. Moreover, elevated mGPS after neoadjuvant treatment (mGPS 1-2) showed a non-significant trend for poorer OS compared to mGPS 0 (28.2 vs. 46.5 months, HR 0.587, p = 0.066). CONCLUSION: Elevated fibrinogen levels after neoadjuvant therapy prior to surgery in stage III/N2 NSCLC patients are associated with significant disadvantage for OS. A decrease in fibrinogen levels after neoadjuvant therapy was found to be a predictor for superior OS in this retrospective patient cohort.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Terapia Neoadjuvante , Prognóstico , Estudos Retrospectivos , Neoplasias Pulmonares/cirurgia , Fibrinogênio
5.
Chem Res Toxicol ; 35(12): 2335-2347, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36410050

RESUMO

Chrysotile asbestos is a carcinogenic mineral that has abundantly been used in industrial and consumer applications. The carcinogenicity of the fibers is partly governed by reactive Fe surface sites that catalyze the generation of highly toxic hydroxyl radicals (HO•) from extracellular hydrogen peroxide (H2O2). Chrysotile also contains Cr, typically in the low mass permille range. In this study, we examined the leaching of Cr from fibers at the physiological lung pH of 7.4 in the presence and absence of H2O2. Furthermore, we investigated the potential of cells from typical asbestos-burdened tissues and cancers to take up Cr leached from chrysotile in PCR expression, immunoblot, and cellular Cr uptake experiments. Finally, the contribution of Cr to fiber-mediated H2O2 decomposition and HO• generation was studied. Chromium readily dissolved from chrysotile fibers in its genotoxic and carcinogenic hexavalent redox state upon oxidation by H2O2. Lung epithelial, mesothelial, lung carcinoma, and mesothelioma cells expressed membrane-bound Cr(VI) transporters and accumulated Cr up to 10-fold relative to the Cr(VI) concentration in the spiked medium. Conversely, anion transporter inhibitors decreased cellular Cr(VI) uptake up to 45-fold. Finally, chromium associated with chrysotile neither decomposed H2O2 nor contributed to fiber-mediated HO• generation. Altogether, our results support the hypothesis that Cr may leach from inhaled chrysotile in its hexavalent state and subsequently accumulate in cells of typically asbestos-burdened tissues, which could contribute to the carcinogenicity of chrysotile fibers. However, unlike Fe, Cr did not significantly contribute to the adverse radical production of chrysotile.


Assuntos
Amianto , Neoplasias Pulmonares , Humanos , Asbestos Serpentinas/toxicidade , Asbestos Serpentinas/química , Peróxido de Hidrogênio , Cromo/toxicidade , Carcinógenos/análise , Neoplasias Pulmonares/induzido quimicamente
6.
Lasers Surg Med ; 54(2): 202-216, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34363230

RESUMO

BACKGROUND AND OBJECTIVE: Optogenetics has opened new insights into biomedical research with the ability to manipulate and control cellular activity using light in combination with genetically engineered photosensitive proteins. By stimulating with light, this method provides high spatiotemporal and high specificity resolution, which is in contrast to conventional pharmacological or electrical stimulation. Optogenetics was initially introduced to control neural activities but was gradually extended to other biomedical fields. STUDY DESIGN: In this paper, firstly, we summarize the current optogenetic tools stimulated by different light sources, including lasers, light-emitting diodes, and laser diodes. Second, we outline the variety of biomedical applications of optogenetics not only for neuronal circuits but also for various kinds of cells and tissues from cardiomyocytes to ganglion cells. Furthermore, we highlight the potential of this technique for treating neurological disorders, cardiac arrhythmia, visual impairment, hearing loss, and urinary bladder diseases as well as clarify the mechanisms underlying cancer progression and control of stem cell differentiation. CONCLUSION: We sought to summarize the various types of promising applications of optogenetics to treat a broad spectrum of disorders. It is conceivable to expect that optogenetics profits a growing number of patients suffering from a range of different diseases in the near future.


Assuntos
Neoplasias , Optogenética , Humanos , Lasers , Neoplasias/metabolismo , Neurônios/metabolismo , Optogenética/métodos
7.
Acta Neuropathol ; 142(2): 339-360, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34046693

RESUMO

Ependymomas (EPN) are central nervous system tumors comprising both aggressive and more benign molecular subtypes. However, therapy of the high-risk subtypes posterior fossa group A (PF-A) and supratentorial RELA-fusion positive (ST-RELA) is limited to gross total resection and radiotherapy, as effective systemic treatment concepts are still lacking. We have recently described fibroblast growth factor receptors 1 and 3 (FGFR1/FGFR3) as oncogenic drivers of EPN. However, the underlying molecular mechanisms and their potential as therapeutic targets have not yet been investigated in detail. Making use of transcriptomic data across 467 EPN tissues, we found that FGFR1 and FGFR3 were both widely expressed across all molecular groups. FGFR3 mRNA levels were enriched in ST-RELA showing the highest expression among EPN as well as other brain tumors. We further identified high expression levels of fibroblast growth factor 1 and 2 (FGF1, FGF2) across all EPN subtypes while FGF9 was elevated in ST-EPN. Interrogation of our EPN single-cell RNA-sequencing data revealed that FGFR3 was further enriched in cycling and progenitor-like cell populations. Corroboratively, we found FGFR3 to be predominantly expressed in radial glia cells in both mouse embryonal and human brain datasets. Moreover, we detected alternative splicing of the FGFR1/3-IIIc variant, which is known to enhance ligand affinity and FGFR signaling. Dominant-negative interruption of FGFR1/3 activation in PF-A and ST-RELA cell models demonstrated inhibition of key oncogenic pathways leading to reduced cell growth and stem cell characteristics. To explore the feasibility of therapeutically targeting FGFR, we tested a panel of FGFR inhibitors in 12 patient-derived EPN cell models revealing sensitivity in the low-micromolar to nano-molar range. Finally, we gain the first clinical evidence for the activity of the FGFR inhibitor nintedanib in the treatment of a patient with recurrent ST-RELA. Together, these preclinical and clinical data suggest FGFR inhibition as a novel and feasible approach to combat aggressive EPN.


Assuntos
Ependimoma/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Ependimoma/genética , Humanos , Camundongos , Recidiva Local de Neoplasia/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética
8.
Liver Int ; 40(9): 2279-2290, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32378800

RESUMO

BACKGROUND & AIMS: Recently, overexpression of the fibroblast growth factor receptor 3 (FGFR3) splice variants FGFR3-IIIb and FGFR3-IIIc was found in ~50% of hepatocellular carcinoma (HCC). Here, we aim to identify FGFR3-IIIb/IIIc ligands, which drive the progression of HCC. METHODS: FACS, MTT assay and/or growth curves served to identify the FGFR3-IIIb/IIIc ligand being most effective to induce growth of hepatoma/hepatocarcinoma cell lines, established from human HCC. The most potent FGF was characterized regarding the expression levels in epithelial and stromal cells of liver and HCC and impact on neoangiogenesis, clonogenicity and invasive growth of hepatoma/hepatocarcinoma cells. RESULTS: Among all FGFR3-IIIb/IIIc ligands tested, FGF9 was the most potent growth factor for hepatoma/hepatocarcinoma cells. Replication and/or sprouting of blood/lymphendothelial cells was stimulated as well. FGF9 occurred mainly in stromal cells of unaltered liver but in epithelial cells of HCC. Every fifth HCC exhibited overexpressed FGF9 and frequent co-upregulation of FGFR3-IIIb/IIIc. In hepatoma/hepatocarcinoma cells FGF9 enhanced the capability for clonogenicity and disintegration of the blood and lymphatic endothelium, being most pronounced in cells overexpressing FGFR3-IIIb or FGFR3-IIIc, respectively. Any of the FGF9 effects in hepatoma/hepatocarcinoma cells was blocked completely by applying the FGFR1-3-specific tyrosine kinase inhibitor BGJ398 or siFGFR3, while siFGFR1/2/4 were mostly ineffective. CONCLUSIONS: FGF9 acts via FGFR3-IIIb/IIIc to enhance growth and aggressiveness of HCC cells. Accordingly, blockade of the FGF9-FGFR3-IIIb/IIIc axis may be an efficient therapeutic option for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Epiteliais , Fator 9 de Crescimento de Fibroblastos , Humanos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Regulação para Cima
9.
Eur J Nutr ; 58(6): 2315-2326, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30039436

RESUMO

PURPOSE: Aim of the study was to find out if gallic acid (GA), a common phenolic in plant foods, prevents obesity induced DNA damage which plays a key role in the induction of overweight associated cancer. METHODS: Male and female C57BL6/J mice were fed with a low fat or a high fat diet (HFD). The HFD group received different doses GA (0, 2.6-20 mg/kg b.w./day) in the drinking water for 1 week. Subsequently, alterations of the genetic stability in blood and inner organs were monitored in single cell gel electrophoresis assays. To elucidate the underlying molecular mechanisms: oxidized DNA bases, alterations of the redox status, lipid and glucose metabolism, cytokine levels and hepatic NF-κB activity were monitored. RESULTS: HFD fed animals had higher body weights; increased DNA damage and oxidation of DNA bases damage were detected in colon, liver and brain but not in blood and white adipose tissue. Furthermore, elevated concentrations of insulin, glucose, triglycerides, MCP-1, TNF-α and NF-κB activity were observed in this group. Small amounts of GA, in the range of human consumption, caused DNA protection and reduced oxidation of DNA bases, as well as biochemical and inflammatory parameters. CONCLUSIONS: Obese animals have increased DNA damage due to oxidation of DNA bases. This effect is probably caused by increased levels of glucose and insulin. The effects of GA can be explained by its hypoglycaemic properties and indicate that the consumption of GA-rich foods prevents adverse health effects in obese individuals.


Assuntos
Dano ao DNA/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Ácido Gálico/farmacologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514305

RESUMO

Acquired resistance during BRAF inhibitor therapy remains a major challenge for melanoma treatment. Accordingly, we evaluated the phenotypical and molecular changes of isogeneic human V600E BRAF-mutant melanoma cell line pairs pre- and post-treatment with vemurafenib. Three treatment naïve lines were subjected to in vitro long-term vemurafenib treatment while three pairs were pre- and post-treatment patient-derived lines. Molecular and phenotypical changes were assessed by Sulforhodamine-B (SRB) assay, quantitative RT-PCR (q-RT-PCR), immunoblot, and time-lapse microscopy. We found that five out of six post-treatment cells had higher migration activity than pretreatment cells. However, no unequivocal correlation between increased migration and classic epithelial-mesenchymal transition (EMT) markers could be identified. In fast migrating cells, the microphthalmia-associated transcription factor (MITF) and epidermal growth factor receptor (EGFR) mRNA levels were considerably lower and significantly higher, respectively. Interestingly, high EGFR expression was associated with elevated migration but not with proliferation. Cells with high EGFR expression showed significantly decreased sensitivity to vemurafenib treatment, and had higher Erk activation and FRA-1 expression. Importantly, melanoma cells with higher EGFR expression were more resistant to the EGFR inhibitor erlotinib treatment than cells with lower expression, with respect to both proliferation and migration inhibition. Finally, EGFR-high melanoma cells were characterized by higher PD-L1 expression, which might in turn indicate that immunotherapy may be an effective approach in these cases.


Assuntos
Movimento Celular , Receptores ErbB/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Vemurafenib/uso terapêutico , Adulto , Idoso , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Masculino , Melanoma/genética , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Vemurafenib/farmacologia
11.
Carcinogenesis ; 39(4): 534-545, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29635378

RESUMO

Malignant pleural mesothelioma (MPM), an aggressive malignancy affecting pleural surfaces, occurs in three main histological subtypes. The epithelioid and sarcomatoid subtypes are characterized by cuboid and fibroblastoid cells, respectively. The biphasic subtype contains a mixture of both. The sarcomatoid subtype expresses markers of epithelial-mesenchymal transition (EMT) and confers the worst prognosis, but the signals and pathways controlling EMT in MPM are not well understood. We demonstrate that treatment with FGF2 or EGF induced a fibroblastoid morphology in several cell lines from biphasic MPM, accompanied by scattering, decreased cell adhesion and increased invasiveness. This depended on the MAP-kinase pathway but was independent of TGFß or PI3-kinase signaling. In addition to changes in known EMT markers, microarray analysis demonstrated differential expression of MMP1, ESM1, ETV4, PDL1 and BDKR2B in response to both growth factors and in epithelioid versus sarcomatoid MPM. Inhibition of MMP1 prevented FGF2-induced scattering and invasiveness. Moreover, in MPM cells with sarcomatoid morphology, inhibition of FGF/MAP-kinase signaling induced a more epithelioid morphology and gene expression pattern. Our findings suggest a critical role of the MAP-kinase axis in the morphological and behavioral plasticity of mesothelioma.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Neoplasias Pleurais/patologia , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Mesotelioma/metabolismo , Mesotelioma Maligno , Neoplasias Pleurais/metabolismo , Transdução de Sinais/fisiologia
12.
EMBO J ; 33(15): 1713-26, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24986882

RESUMO

Receptor tyrosine kinases (RTKs) are a large family of cell surface receptors that sense growth factors and hormones and regulate a variety of cell behaviours in health and disease. Contactless activation of RTKs with spatial and temporal precision is currently not feasible. Here, we generated RTKs that are insensitive to endogenous ligands but can be selectively activated by low-intensity blue light. We screened light-oxygen-voltage (LOV)-sensing domains for their ability to activate RTKs by light-activated dimerization. Incorporation of LOV domains found in aureochrome photoreceptors of stramenopiles resulted in robust activation of the fibroblast growth factor receptor 1 (FGFR1), epidermal growth factor receptor (EGFR) and rearranged during transfection (RET). In human cancer and endothelial cells, light induced cellular signalling with spatial and temporal precision. Furthermore, light faithfully mimicked complex mitogenic and morphogenic cell behaviour induced by growth factors. RTKs under optical control (Opto-RTKs) provide a powerful optogenetic approach to actuate cellular signals and manipulate cell behaviour.


Assuntos
Receptores ErbB/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/metabolismo , Ativação Enzimática , Receptores ErbB/genética , Células HEK293 , Humanos , Luz , Fosforilação , Engenharia de Proteínas/métodos , Multimerização Proteica , Estrutura Terciária de Proteína , Receptores Proteína Tirosina Quinases/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Proteínas Recombinantes/genética , Transdução de Sinais
13.
BMC Cancer ; 18(1): 542, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739364

RESUMO

BACKGROUND: Currently, there are no available targeted therapy options for non-V600 BRAF mutated tumors. The aim of this study was to investigate the effects of RAF and MEK concurrent inhibition on tumor growth, migration, signaling and apoptosis induction in preclinical models of non-V600 BRAF mutant tumor cell lines. METHODS: Six BRAF mutated human tumor cell lines CRL5885 (G466 V), WM3629 (D594G), WM3670 (G469E), MDAMB231 (G464 V), CRL5922 (L597 V) and A375 (V600E as control) were investigated. Pan-RAF inhibitor (sorafenib or AZ628) and MEK inhibitor (selumetinib) or their combination were used in in vitro viability, video microscopy, immunoblot, cell cycle and TUNEL assays. The in vivo effects of the drugs were assessed in an orthotopic NSG mouse breast cancer model. RESULTS: All cell lines showed a significant growth inhibition with synergism in the sorafenib/AZ628 and selumetinib combination. Combination treatment resulted in higher Erk1/2 inhibition and in increased induction of apoptosis when compared to single agent treatments. However, single selumetinib treatment could cause adverse therapeutic effects, like increased cell migration in certain cells, selumetinib and sorafenib combination treatment lowered migratory capacity in all the cell lines. Importantly, combination resulted in significantly increased tumor growth inhibition in orthotropic xenografts of MDAMB231 cells when compared to sorafenib - but not to selumetinib - treatment. CONCLUSIONS: Our data suggests that combined blocking of RAF and MEK may achieve increased therapeutic response in non-V600 BRAF mutant tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Quinases raf/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Mutação , Neoplasias/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int J Cancer ; 140(12): 2758-2770, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27813079

RESUMO

Oncogenic mutations of BRAF lead to constitutive ERK activity that supports melanoma cell growth and survival. While Ca2+ signaling is a well-known regulator of tumor progression, the crosstalk between Ca2+ signaling and the Ras-BRAF-MEK-ERK pathway is much less explored. Here we show that in BRAF mutant melanoma cells the abundance of the plasma membrane Ca2+ ATPase isoform 4b (PMCA4b, ATP2B4) is low at baseline but markedly elevated by treatment with the mutant BRAF specific inhibitor vemurafenib. In line with these findings gene expression microarray data also shows decreased PMCA4b expression in cutaneous melanoma when compared to benign nevi. The MEK inhibitor selumetinib-similarly to that of the BRAF-specific inhibitor-also increases PMCA4b levels in both BRAF and NRAS mutant melanoma cells suggesting that the MAPK pathway is involved in the regulation of PMCA4b expression. The increased abundance of PMCA4b in the plasma membrane enhances [Ca2+ ]i clearance from cells after Ca2+ entry. Moreover we show that both vemurafenib treatment and PMCA4b overexpression induce marked inhibition of migration of BRAF mutant melanoma cells. Importantly, reduced migration of PMCA4b expressing BRAF mutant cells is associated with a marked decrease in their metastatic potential in vivo. Taken together, our data reveal an important crosstalk between Ca2+ signaling and the MAPK pathway through the regulation of PMCA4b expression and suggest that PMCA4b is a previously unrecognized metastasis suppressor.


Assuntos
Movimento Celular/genética , Melanoma/genética , Mutação , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Animais , Western Blotting , Cálcio/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/metabolismo , Melanoma/patologia , Camundongos SCID , Microscopia Confocal , Metástase Neoplásica , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Sulfonamidas/farmacologia , Transplante Heterólogo , Vemurafenib
15.
Nat Chem Biol ; 11(12): 952-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26457372

RESUMO

High-throughput live-cell screens are intricate elements of systems biology studies and drug discovery pipelines. Here, we demonstrate an optogenetics-assisted method that avoids the need for chemical activators and reporters, reduces the number of operational steps and increases information content in a cell-based small-molecule screen against human protein kinases, including an orphan receptor tyrosine kinase. This blueprint for all-optical screening can be adapted to many drug targets and cellular processes.


Assuntos
Ensaios de Triagem em Larga Escala , Luz , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Células HEK293 , Humanos , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
16.
Hepatology ; 62(6): 1767-78, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26235436

RESUMO

UNLABELLED: Fibroblast growth factor receptors (FGFRs) are frequently up-regulated in subsets of hepatocellular carcinoma (HCC). Here, we provide mechanistic insight that FGFR3 splice variants IIIb and IIIc impact considerably on the malignant phenotype of HCC cells. The occurrence of FGFR3 variants was analyzed in human HCC samples. In hepatoma/hepatocarcinoma cell lines, FGFR3 isoforms were overexpressed by lentiviral constructs or down-modulated by small interfering RNA (siRNA; affecting FGFR3-IIIb and -IIIc) or an adenoviral kinase-dead FGFR3-IIIc construct (kdFGFR3). Elevated levels of FGFR3-IIIb and/or -IIIc were found in 53% of HCC cases. FGFR3-IIIb overexpression occurred significantly more often in primary tumors of large (pT2-4) than of small size (pT1). Furthermore, one or both isoforms were enhanced mostly in cases with early tumor infiltration and/or recurrence at the time of surgery or follow-up examinations. In hepatoma/hepatocarcinoma cells, up-regulated FGFR3-IIIb conferred an enhanced capability for proliferation. Both FGFR3-IIIb and FGFR3-IIIc suppressed apoptotic activity, enhanced clonogenic growth, and induced disintegration of the blood/lymph endothelium. The tumorigenicity of cells in severe combined immunodeficiency mice was augmented to a larger degree by variant IIIb than by IIIc. Conversely, siRNA targeting FGFR3 and kdFGFR3 reduced clonogenicity, anchorage-independent growth, and disintegration of the blood/lymph endothelium in vitro. Furthermore, kdFGFR3 strongly attenuated tumor formation in vivo. CONCLUSIONS: Deregulated FGFR3 variants exhibit specific effects in the malignant progression of HCC cells. Accordingly, blockade of FGFR3-mediated signaling may be a promising therapeutic approach to antagonize growth and malignant behavior of HCC cells.


Assuntos
Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Camundongos SCID , Isoformas de Proteínas , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Células Tumorais Cultivadas , Regulação para Cima
17.
J Pathol ; 237(2): 203-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26011651

RESUMO

Malignant pleural mesothelioma (MPM) is a devastating malignancy characterized by invasive growth and rapid recurrence. The identification and inhibition of molecular components leading to this migratory and invasive phenotype are thus essential. Accordingly, a genome-wide expression array analysis was performed on MPM cell lines and a set of 139 genes was identified as differentially expressed in cells with high versus low migratory activity. Reduced expression of the novel tumour suppressor integrin α7 (ITGA7) was found in highly motile cells. A significant negative correlation was observed between ITGA7 transcript levels and average displacement of cells. Forced overexpression of ITGA7 in MPM cells with low endogenous ITGA7 expression inhibited cell motility, providing direct evidence for the regulatory role of ITGA7 in MPM cell migration. MPM cells showed decreased ITGA7 expressions at both transcription and protein levels when compared to non-malignant mesothelial cells. The majority of MPM cell cultures displayed hypermethylation of the ITGA7 promoter when compared to mesothelial cultures. A statistically significant negative correlation between ITGA7 methylation and ITGA7 expression was also observed in MPM cells. While normal human pleura samples unambiguously expressed ITGA7, a varying level of expression was found in a panel of 200 human MPM samples. In multivariate analysis, ITGA7 expression was found to be an independent prognostic factor. Although there was no correlation between histological subtypes and ITGA7 expression, importantly, patients with high tumour cell ITGA7 expression had an increased median overall survival compared to the low- or no-expression groups (463 versus 278 days). In conclusion, our data suggest that ITGA7 is an epigenetically regulated tumour suppressor gene and a prognostic factor in human MPM.


Assuntos
Antígenos CD/metabolismo , Movimento Celular , Epigênese Genética , Cadeias alfa de Integrinas/metabolismo , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Neoplasias Pleurais/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Antígenos CD/genética , Linhagem Celular Tumoral , Metilação de DNA , Regulação para Baixo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Cadeias alfa de Integrinas/genética , Estimativa de Kaplan-Meier , Laminina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Mesotelioma/genética , Mesotelioma/mortalidade , Mesotelioma/patologia , Mesotelioma Maligno , Análise Multivariada , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Pleurais/genética , Neoplasias Pleurais/mortalidade , Neoplasias Pleurais/patologia , Prognóstico , Regiões Promotoras Genéticas , Modelos de Riscos Proporcionais , RNA Mensageiro/metabolismo , Fatores de Risco , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor/genética
18.
Int J Cancer ; 136(9): 2078-90, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25302649

RESUMO

Ovarian cancer (OC) is caused by genetic aberrations in networks that control growth and survival. Importantly, aberrant cancer metabolism interacts with oncogenic signaling providing additional drug targets. Tumors overexpress the lipogenic enzyme fatty acid synthase (FASN) and are inhibited by FASN blockers, whereas normal cells are FASN-negative and FASN-inhibitor-resistant. Here, we demonstrate that this holds true when ovarian/oviductal cells reside in their autochthonous tissues, whereas in culture they express FASN and are FASN-inhibitor-sensitive. Upon subculture, nonmalignant cells cease growth, express senescence-associated ß-galactosidase, lose FASN and become FASN-inhibitor-resistant. Immortalized ovarian/oviductal epithelial cell lines­although resisting senescence­reveal distinct growth activities, which correlate with FASN levels and FASN drug sensitivities. Accordingly, ectopic FASN stimulates growth in these cells. Moreover, FASN levels and lipogenic activities affect cellular lipid composition as demonstrated by thin-layer chromatography. Correlation between proliferation and FASN levels was finally evaluated in cancer cells such as HOC-7, which contain subclones with variable differentiation/senescence and corresponding FASN expression/FASN drug sensitivity. Interestingly, senescent phenotypes can be induced in parental HOC-7 by differentiating agents. In OC cells, FASN drugs induce cell cycle blockade in S and/or G2/M and stimulate apoptosis, whereas in normal cells they only cause cell cycle deceleration without apoptosis. Thus, normal cells, although growth-inhibited, may survive and recover from FASN blockade, whereas malignant cells get extinguished. FASN expression and FASN drug sensitivity are directly linked to cell growth and correlate with transformation/differentiation/senescence only indirectly. FASN is therefore a metabolic marker of cell proliferation rather than a marker of malignancy and is a useful target for future drug development.


Assuntos
Biomarcadores Tumorais/genética , Proliferação de Células/genética , Ácido Graxo Sintase Tipo I/genética , Neoplasias Ovarianas/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/efeitos dos fármacos , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico
19.
Br J Cancer ; 113(6): 963-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26263483

RESUMO

BACKGROUND: Fibulin-3 (FBLN3) was recently presented as a promising novel biomarker for malignant pleural mesothelioma (MPM), warranting independent validation studies. METHODS: ELISA was used to measure cellular and secreted FBLN3 in cell lines, in plasma of xenograft tumour-bearing mice, in plasma from two independent series of MPM and non-MPM patients and in pleural fluid from a third series. Diagnostic and prognostic potential of FBLN3 was assessed by receiver operating characteristics curve analysis and Kaplan-Meier method, respectively. RESULTS: FBLN3 was expressed in all MPM and benign mesothelial cell lines tested, and a correlation was observed between cellular protein expression and secreted levels. Human FBLN3 was detectable in plasma of tumour-bearing mice, suggesting that MPM cells contribute to levels of circulating FBLN3. Plasma FBLN3 was significantly elevated in MPM patients from the Sydney cohort, but not the Vienna cohort, but the diagnostic accuracy was low (63%, (95% CI: 50.1-76.4) and 56% (95% CI: 41.5-71.0), respectively). Although FBLN3 levels in pleural effusions were not significantly different between cases and controls, FBLN3 levels in pleural effusion fluid were found to be independently associated with prognosis (hazard ratio of 9.92 (95% CI: 2.14-45.93)). CONCLUSIONS: These data confirm the potential prognostic value of pleural effusion FBLN3, but question the diagnostic value of this protein in MPM patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Mesotelioma/diagnóstico , Mesotelioma/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pleurais/diagnóstico , Neoplasias Pleurais/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Derrame Pleural/metabolismo , Prognóstico
20.
Mol Carcinog ; 54(9): 841-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24719266

RESUMO

Fibroblast growth factor receptors (FGFRs) are important in malignant progression of several human epithelial tumors. However, little is known about FGFRs in canine or human soft tissue sarcomas. Thus, our aim was to investigate expression of FGFRs and their involvement in cell survival in sarcomas of both species. FGFR1-4 and FGFRL1 transcripts as well as IIIb/IIIc splice variants of FGFR1-3 were evaluated in 3 canine- and 6 human sarcoma cell lines and 19 spontaneous canine sarcomas by SYBRqPCR. FGFR1 protein expression was assessed by immunohistochemistry. Growth inhibitory effects of FGFR1 inhibitor PD166866 and dominant negative recombinant FGFR adenoviral expression constructs (dnFGFR) on tumor cell lines were analyzed. Profiling of multiple FGFR transcripts detected comparable co-expression in most of human and canine sarcoma cell lines and canine tumor specimens. This indicates existence of closely related regulation mechanisms for FGFR expression in sarcomas of both species. FGFR1 with splice variant IIIc was consistently expressed with highest transcript levels. In 88% of the spontaneous tumor samples a heterogeneous FGFR1 protein expression was observed. Significant growth inhibition and cell death was seen after infection with dnFGFR1 in canine and human sarcoma cells, but not with dnFGFR3 and 4. PD166866 showed selective cytotoxicity with IC50 values between 12.1 and 26.4 µM. FGFR1 inhibition blocked ligand-induced tyrosine phosphorylation of ERK1/2 mitogen-activated protein kinase isoforms. This study emphasizes the important role FGFR1, especially splice variant IIIc, likely plays in sarcomas. Inhibitory small molecules could be of potential use for targeted therapy in aggressive sarcomas of both species.


Assuntos
Proteínas Tirosina Quinases/farmacologia , Pirimidinas/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Sarcoma/genética , Ureia/análogos & derivados , Animais , Linhagem Celular Tumoral , Cães , Regulação Neoplásica da Expressão Gênica , Humanos , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/análise , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Transdução de Sinais/efeitos dos fármacos , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA