Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7970): 495-499, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344594

RESUMO

Strongly interacting topological matter1 exhibits fundamentally new phenomena with potential applications in quantum information technology2,3. Emblematic instances are fractional quantum Hall (FQH) states4, in which the interplay of a magnetic field and strong interactions gives rise to fractionally charged quasi-particles, long-ranged entanglement and anyonic exchange statistics. Progress in engineering synthetic magnetic fields5-21 has raised the hope to create these exotic states in controlled quantum systems. However, except for a recent Laughlin state of light22, preparing FQH states in engineered systems remains elusive. Here we realize a FQH state with ultracold atoms in an optical lattice. The state is a lattice version of a bosonic ν = 1/2 Laughlin state4,23 with two particles on 16 sites. This minimal system already captures many hallmark features of Laughlin-type FQH states24-28: we observe a suppression of two-body interactions, we find a distinctive vortex structure in the density correlations and we measure a fractional Hall conductivity of σH/σ0 = 0.6(2) by means of the bulk response to a magnetic perturbation. Furthermore, by tuning the magnetic field, we map out the transition point between the normal and the FQH regime through a spectroscopic investigation of the many-body gap. Our work provides a starting point for exploring highly entangled topological matter with ultracold atoms29-33.

2.
Nature ; 613(7944): 463-467, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653561

RESUMO

Conventional superconductivity emerges from pairing of charge carriers-electrons or holes-mediated by phonons1. In many unconventional superconductors, the pairing mechanism is conjectured to be mediated by magnetic correlations2, as captured by models of mobile charges in doped antiferromagnets3. However, a precise understanding of the underlying mechanism in real materials is still lacking and has been driving experimental and theoretical research for the past 40 years. Early theoretical studies predicted magnetic-mediated pairing of dopants in ladder systems4-8, in which idealized theoretical toy models explained how pairing can emerge despite repulsive interactions9. Here we experimentally observe this long-standing theoretical prediction, reporting hole pairing due to magnetic correlations in a quantum gas of ultracold atoms. By engineering doped antiferromagnetic ladders with mixed-dimensional couplings10, we suppress Pauli blocking of holes at short length scales. This results in a marked increase in binding energy and decrease in pair size, enabling us to observe pairs of holes predominantly occupying the same rung of the ladder. We find a hole-hole binding energy of the order of the superexchange energy and, upon increased doping, we observe spatial structures in the pair distribution, indicating repulsion between bound hole pairs. By engineering a configuration in which binding is strongly enhanced, we delineate a strategy to increase the critical temperature for superconductivity.

3.
Nature ; 572(7769): 358-362, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31413377

RESUMO

Polarons-electronic charge carriers 'dressed' by a local polarization of the background environment-are among the most fundamental quasiparticles in interacting many-body systems, and emerge even at the level of a single dopant1. In the context of the two-dimensional Fermi-Hubbard model, polarons are predicted to form around charged dopants in an antiferromagnetic background in the low-doping regime, close to the Mott insulating state2-7; this prediction is supported by macroscopic transport and spectroscopy measurements in materials related to high-temperature superconductivity8. Nonetheless, a direct experimental observation of the internal structure of magnetic polarons is lacking. Here we report the microscopic real-space characterization of magnetic polarons in a doped Fermi-Hubbard system, enabled by the single-site spin and density resolution of our ultracold-atom quantum simulator. We reveal the dressing of doublons by a local reduction-and even sign reversal-of magnetic correlations, which originates from the competition between kinetic and magnetic energy in the system. The experimentally observed polaron signatures are found to be consistent with an effective string model at finite temperature7. We demonstrate that delocalization of the doublon is a necessary condition for polaron formation, by comparing this setting with a scenario in which a doublon is pinned to a lattice site. Our work could facilitate the study of interactions between polarons, which may lead to collective behaviour, such as stripe formation, as well as the microscopic exploration of the fate of polarons in the pseudogap and 'bad metal' phases.

4.
Phys Rev Lett ; 132(23): 230401, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38905661

RESUMO

The combination of optical tweezer arrays with strong interactions-via dipole exchange of molecules and Van der Waals interactions of Rydberg atoms-has opened the door for the exploration of a wide variety of quantum spin models. A next significant step will be the combination of such settings with mobile dopants. This will enable one to simulate the physics believed to underlie many strongly correlated quantum materials. Here, we propose an experimental scheme to realize bosonic t-J models via encoding the local Hilbert space in a set of three internal atomic or molecular states. By engineering antiferromagnetic (AFM) couplings between spins, competition between charge motion and magnetic order similar to that in high-T_{c} cuprates can be realized. Since the ground states of the 2D bosonic AFM t-J model we propose to realize have not been studied extensively before, we start by analyzing the case of two dopants-the simplest instance in which their bosonic statistics plays a role-and compare our results to the fermionic case. We perform large-scale density matrix renormalization group calculations on six-legged cylinders, and find a strong tendency for bosonic holes to form stripes. This demonstrates that bosonic, AFM t-J models may contain similar physics as the collective phases in strongly correlated electrons.

5.
Nature ; 545(7655): 462-466, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28541324

RESUMO

Exotic phenomena in systems with strongly correlated electrons emerge from the interplay between spin and motional degrees of freedom. For example, doping an antiferromagnet is expected to give rise to pseudogap states and high-temperature superconductors. Quantum simulation using ultracold fermions in optical lattices could help to answer open questions about the doped Hubbard Hamiltonian, and has recently been advanced by quantum gas microscopy. Here we report the realization of an antiferromagnet in a repulsively interacting Fermi gas on a two-dimensional square lattice of about 80 sites at a temperature of 0.25 times the tunnelling energy. The antiferromagnetic long-range order manifests through the divergence of the correlation length, which reaches the size of the system, the development of a peak in the spin structure factor and a staggered magnetization that is close to the ground-state value. We hole-dope the system away from half-filling, towards a regime in which complex many-body states are expected, and find that strong magnetic correlations persist at the antiferromagnetic ordering vector up to dopings of about 15 per cent. In this regime, numerical simulations are challenging and so experiments provide a valuable benchmark. Our results demonstrate that microscopy of cold atoms in optical lattices can help us to understand the low-temperature Fermi-Hubbard model.

6.
Nature ; 546(7659): 519-523, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28640260

RESUMO

The interplay between magnetic fields and interacting particles can lead to exotic phases of matter that exhibit topological order and high degrees of spatial entanglement. Although these phases were discovered in a solid-state setting, recent innovations in systems of ultracold neutral atoms-uncharged atoms that do not naturally experience a Lorentz force-allow the synthesis of artificial magnetic, or gauge, fields. This experimental platform holds promise for exploring exotic physics in fractional quantum Hall systems, owing to the microscopic control and precision that is achievable in cold-atom systems. However, so far these experiments have mostly explored the regime of weak interactions, which precludes access to correlated many-body states. Here, through microscopic atomic control and detection, we demonstrate the controlled incorporation of strong interactions into a two-body system with a chiral band structure. We observe and explain the way in which interparticle interactions induce chirality in the propagation dynamics of particles in a ladder-like, real-space lattice governed by the interacting Harper-Hofstadter model, which describes lattice-confined, coherently mobile particles in the presence of a magnetic field. We use a bottom-up strategy to prepare interacting chiral quantum states, thus circumventing the challenges of a top-down approach that begins with a many-body system, the size of which can hinder the preparation of controlled states. Our experimental platform combines all of the necessary components for investigating highly entangled topological states, and our observations provide a benchmark for future experiments in the fractional quantum Hall regime.

7.
Phys Rev Lett ; 128(24): 246602, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776451

RESUMO

The bulk-boundary correspondence relates quantized edge states to bulk topological invariants in topological phases of matter. In one-dimensional symmetry-protected topological systems, quantized topological Thouless pumps directly reveal this principle and provide a sound mathematical foundation. Symmetry-protected higher-order topological phases of matter (HOSPTs) also feature a bulk-boundary correspondence, but its connection to quantized charge transport remains elusive. Here, we show that quantized Thouless pumps connecting C_{4}-symmetric HOSPTs can be described by a tuple of four Chern numbers that measure quantized bulk charge transport in a direction-dependent fashion. Moreover, this tuple of Chern numbers allows to predict the sign and value of fractional corner charges in the HOSPTs. We show that the topologically nontrivial phase can be characterized by both quadrupole and dipole configurations, shedding new light on current debates about the multipole nature of the HOSPT bulk. By employing corner-periodic boundary conditions, we generalize Restas's theory to HOSPTs. Our approach provides a simple framework for understanding topological invariants of general HOSPTs and paves the way for an in-depth description of future dynamical experiments.

8.
Phys Rev Lett ; 127(16): 167203, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34723595

RESUMO

Confinement is an ubiquitous phenomenon when matter couples to gauge fields, which manifests itself in a linear string potential between two static charges. Although gauge fields can be integrated out in one dimension, they can mediate nonlocal interactions which in turn influence the paradigmatic Luttinger liquid properties. However, when the charges become dynamical and their densities finite, understanding confinement becomes challenging. Here we show that confinement in 1D Z_{2} lattice gauge theories, with dynamical matter fields and arbitrary densities, is related to translational symmetry breaking in a nonlocal basis. The exact transformation to this string-length basis leads us to an exact mapping of Luttinger parameters reminiscent of a Luther-Emery rescaling. We include the effects of local, but beyond contact, interactions between the matter particles, and show that confined mesons can form a Mott-insulating state when the deconfined charges cannot. While the transition to the Mott state cannot be detected in the Green's function of the charges, we show that the metallic state is characterized by hidden off-diagonal quasi-long-range order. Our predictions provide new insights to the physics of confinement of dynamical charges, and can be experimentally addressed in Rydberg-dressed quantum gases in optical lattices.

9.
Phys Rev Lett ; 127(18): 185302, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767413

RESUMO

The challenge of understanding the dynamics of a mobile impurity in an interacting quantum many-body medium comes from the necessity of including entanglement between the impurity and excited states of the environment in a wide range of energy scales. In this Letter, we investigate the motion of a finite mass impurity injected into a three-dimensional quantum Bose fluid as it starts shedding Bogoliubov excitations. We uncover a transition in the dynamics as the impurity's velocity crosses a critical value that depends on the strength of the interaction between the impurity and bosons as well as the impurity's recoil energy. We find that in injection experiments, the two regimes differ not only in the character of the impurity velocity abatement but also exhibit qualitative differences in the Loschmidt echo, density ripples excited in the Bose-Einstein condensate, and momentum distribution of scattered bosonic particles. The transition is a manifestation of a dynamical quantum Cherenkov effect and should be experimentally observable with ultracold atoms using Ramsey interferometry, rf spectroscopy, absorption imaging, and time-of-flight imaging.

10.
Phys Rev Lett ; 125(25): 256401, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416402

RESUMO

We study the interplay of spin and charge degrees of freedom in a doped Ising antiferromagnet, where the motion of charges is restricted to one dimension. The phase diagram of this mixed-dimensional t-J_{z} model can be understood in terms of spinless chargons coupled to a Z_{2} lattice gauge field. The antiferromagnetic couplings give rise to interactions between Z_{2} electric field lines which, in turn, lead to a robust stripe phase at low temperatures. At higher temperatures, a confined meson-gas phase is found for low doping whereas at higher doping values, a robust deconfined chargon-gas phase is seen, which features hidden antiferromagnetic order. We confirm these phases in quantum Monte Carlo simulations. Our model can be implemented and its phases detected with existing technology in ultracold atom experiments. The critical temperature for stripe formation with a sufficiently high hole concentration is around the spin-exchange energy J_{z}, i.e., well within reach of current experiments.

11.
Phys Rev Lett ; 124(7): 073601, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142349

RESUMO

Dominant multiparticle interactions can give rise to exotic physical phases with anyonic excitations and phase transitions without local order parameters. In spin systems with a global SU(N) symmetry, cyclic ring-exchange couplings constitute the first higher-order interaction in this class. In this Letter, we propose a protocol showing how SU(N)-invariant multibody interactions can be implemented in optical tweezer arrays. We utilize the flexibility to rearrange the tweezer configuration on short timescales compared to the typical lifetimes, in combination with strong nonlocal Rydberg interactions. As a specific example, we demonstrate how a chiral cyclic ring-exchange Hamiltonian can be implemented in a two-leg ladder geometry. We study its phase diagram using density-matrix renormalization group simulations and identify phases with dominant vector chirality, a ferromagnet, and an emergent spin-1 Haldane phase. We also discuss how the proposed protocol can be utilized to implement the strongly frustrated J-Q model, a candidate for hosting a deconfined quantum critical point.

12.
Phys Rev Lett ; 124(12): 120503, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281870

RESUMO

We investigate a quantum many-body lattice system of one-dimensional spinless fermions interacting with a dynamical Z_{2} gauge field. The gauge field mediates long-range attraction between fermions resulting in their confinement into bosonic dimers. At strong coupling we develop an exactly solvable effective theory of such dimers with emergent constraints. Even at generic coupling and fermion density, the model can be rewritten as a local spin chain. Using the density matrix renormalization group the system is shown to form a Luttinger liquid, indicating the emergence of fractionalized excitations despite the confinement of lattice fermions. In a finite chain we observe the doubling of the period of Friedel oscillations which paves the way towards experimental detection of confinement in this system. We discuss the possibility of a Mott phase at the commensurate filling 2/3.

13.
Phys Rev Lett ; 116(5): 053602, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26894712

RESUMO

When an impurity interacts with a bath of phonons it forms a polaron. For increasing interaction strengths the mass of the polaron increases and it can become self-trapped. For impurity atoms inside an atomic Bose-Einstein condensate (BEC) the nature of this transition is not understood. While Feynman's variational approach to the Fröhlich model predicts a sharp transition for light impurities, renormalization group studies always predict an extended intermediate-coupling region characterized by large phonon correlations. To investigate this intricate regime and to test polaron physics beyond the validity of the Fröhlich model we suggest a versatile experimental setup that allows us to tune both the mass of the impurity and its interactions with the BEC. The impurity is realized as a dark-state polariton (DSP) inside a quasi-two-dimensional BEC. We show that its interactions with the Bogoliubov phonons lead to photonic polarons, described by the Bogoliubov-Fröhlich Hamiltonian, and make theoretical predictions using an extension of a recently introduced renormalization group approach to Fröhlich polarons.

14.
Phys Rev Lett ; 117(11): 113002, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27661684

RESUMO

We analyze the dynamics of Bose polarons in the vicinity of a Feshbach resonance between the impurity and host atoms. We compute the radio-frequency absorption spectra for the case when the initial state of the impurity is noninteracting and the final state is strongly interacting with the host atoms. We compare results of different theoretical approaches including a single excitation expansion, a self-consistent T-matrix method, and a time-dependent coherent state approach. Our analysis reveals sharp spectral features arising from metastable states with several Bogoliubov excitations bound to the impurity atom. This surprising result of the interplay of many-body and few-body Efimov type bound state physics can only be obtained by going beyond the commonly used Fröhlich model and including quasiparticle scattering processes. Close to the resonance we find that strong fluctuations lead to a broad, incoherent absorption spectrum where no quasiparticle peak can be assigned.

15.
Phys Rev Lett ; 113(15): 155301, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375718

RESUMO

We suggest a scheme for the preparation of highly correlated Laughlin states in the presence of synthetic gauge fields, realizing an analogue of the fractional quantum Hall effect in photonic or atomic systems of interacting bosons. It is based on the idea of growing such states by adding weakly interacting composite fermions along with magnetic flux quanta one by one. The topologically protected Thouless pump ("Laughlin's argument") is used to create two localized flux quanta and the resulting hole excitation is subsequently filled by a single boson, which, together with one of the flux quanta, forms a composite fermion. Using our protocol, filling 1/2 Laughlin states can be grown with particle number N increasing linearly in time and strongly suppressed number fluctuations. To demonstrate the feasibility of our scheme, we consider two-dimensional lattices subject to effective magnetic fields and strong on-site interactions. We present numerical simulations of small lattice systems and also discuss the influence of losses.

16.
Phys Rev Lett ; 110(26): 260405, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848851

RESUMO

We analyze interacting ultracold bosonic atoms in a one-dimensional superlattice potential with alternating tunneling rates t1 and t2 and inversion symmetry, which is the bosonic analogue of the Su-Schrieffer-Heeger model. A Z2 topological order parameter is introduced which is quantized for the Mott insulating (MI) phases. Depending on the ratio t1/t2 the n=1/2 MI phase is topologically nontrivial, which results in many-body edge states at open boundaries. In contrast to the Su-Schrieffer-Heeger model the bosonic counterpart lacks chiral symmetry and the edge states are no longer midgap. This leads to a generalization of the bulk-edge correspondence, which we discuss in detail. The edge states can be observed in cold atom experiments by creating a step in the effective confining potential, e.g., by a second heavy atom species, which leads to an interface between two MI regions with filling n=1 and n=1/2. The shape and energy of the edge states as well as the conditions for their occupation are determined analytically in the strong coupling limit and in general by density-matrix renormalization group simulations.

17.
Nat Commun ; 13(1): 5997, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220824

RESUMO

Exploring the interplay between topological band structures and tunable nonlinearities has become possible with the development of synthetic lattice systems. In this emerging field of nonlinear topological physics, an experiment revealed the quantized motion of solitons in Thouless pumps and suggested that this phenomenon was dictated by the Chern number of the band from which solitons emanate. Here, we elucidate the origin of this nonlinear topological effect, by showing that the motion of solitons is established by the quantized displacement of the underlying Wannier functions. Our general theoretical approach, which fully clarifies the central role of the Chern number in solitonic pumps, provides a framework for describing the topological transport of nonlinear excitations in a broad class of physical systems. Exploiting this interdisciplinarity, we introduce an interaction-induced topological pump for ultracold atomic mixtures, where solitons of impurity atoms experience a quantized drift resulting from genuine interaction processes with their environment.

18.
Science ; 374(6563): 82-86, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34591626

RESUMO

The competition between antiferromagnetism and hole motion in two-dimensional Mott insulators lies at the heart of a doping-dependent transition from an anomalous metal to a conventional Fermi liquid. We observe such a crossover in Fermi-Hubbard systems on a cold-atom quantum simulator and reveal the transformation of multipoint correlations between spins and holes upon increasing doping at temperatures around the superexchange energy. Conventional observables, such as spin susceptibility, are furthermore computed from the microscopic snapshots of the system. Starting from a magnetic polaron regime, we find the system evolves into a Fermi liquid featuring incommensurate magnetic fluctuations and fundamentally altered correlations. The crossover is completed for hole dopings around 30%. Our work benchmarks theoretical approaches and discusses possible connections to lower-temperature phenomena.

19.
Science ; 367(6474): 186-189, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31919220

RESUMO

Elementary particles carry several quantum numbers, such as charge and spin. However, in an ensemble of strongly interacting particles, the emerging degrees of freedom can fundamentally differ from those of the individual constituents. For example, one-dimensional systems are described by independent quasiparticles carrying either spin (spinon) or charge (holon). Here, we report on the dynamical deconfinement of spin and charge excitations in real space after the removal of a particle in Fermi-Hubbard chains of ultracold atoms. Using space- and time-resolved quantum gas microscopy, we tracked the evolution of the excitations through their signatures in spin and charge correlations. By evaluating multipoint correlators, we quantified the spatial separation of the excitations in the context of fractionalization into single spinons and holons at finite temperatures.

20.
Sci Adv ; 5(10): eaav7444, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31646173

RESUMO

From the standard model of particle physics to strongly correlated electrons, various physical settings are formulated in terms of matter coupled to gauge fields. Quantum simulations based on ultracold atoms in optical lattices provide a promising avenue to study these complex systems and unravel the underlying many-body physics. Here, we demonstrate how quantized dynamical gauge fields can be created in mixtures of ultracold atoms in optical lattices, using a combination of coherent lattice modulation with strong interactions. Specifically, we propose implementation of ℤ2 lattice gauge theories coupled to matter, reminiscent of theories previously introduced in high-temperature superconductivity. We discuss a range of settings from zero-dimensional toy models to ladders featuring transitions in the gauge sector to extended two-dimensional systems. Mastering lattice gauge theories in optical lattices constitutes a new route toward the realization of strongly correlated systems, with properties dictated by an interplay of dynamical matter and gauge fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA