RESUMO
Signal transducer and activator of transcription factor 3 (STAT-3) is known to be overexpressed in cancer stem cells. Poor solubility and variable drug absorption are linked to low bioavailability and decreased efficacy. Many of the drugs regulating STAT-3 expression lack aqueous solubility; hence hindering efficient bioavailability. A theranostics nanoplatform based on luminescent carbon particles decorated with cucurbit[6]uril is introduced for enhancing the solubility of niclosamide, a STAT-3 inhibitor. The host-guest chemistry between cucurbit[6]uril and niclosamide makes the delivery of the hydrophobic drug feasible while carbon nanoparticles enhance cellular internalization. Extensive physicochemical characterizations confirm successful synthesis. Subsequently, the host-guest chemistry of niclosamide and cucurbit[6]uril is studied experimentally and computationally. In vitro assessments in human breast cancer cells indicate approximately twofold enhancement in IC50 of drug. Fourier transform infrared and fluorescence imaging demonstrate efficient cellular internalization. Furthermore, the catalytic biodegradation of the nanoplatforms occur upon exposure to human myeloperoxidase in short time. In vivo studies on athymic mice with MCF-7 xenograft indicate the size of tumor in the treatment group is half of the controls after 40 d. Immunohistochemistry corroborates the downregulation of STAT-3 phosphorylation. Overall, the host-guest chemistry on nanocarbon acts as a novel arsenal for STAT-3 inhibition.
RESUMO
In this work, we demonstrate the significance of defined surface chemistry in synthesizing luminescent carbon nanomaterials (LCN) with the capability to perform dual functions (i.e., diagnostic imaging and therapy). The surface chemistry of LCN has been tailored to achieve two different varieties: one that has a thermoresponsive polymer and aids in the controlled delivery of drugs, and the other that has fluorescence emission both in the visible and near-infrared (NIR) region and can be explored for advanced diagnostic modes. Although these particles are synthesized using simple, yet scalable hydrothermal methods, they exhibit remarkable stability, photoluminescence and biocompatibility. The photoluminescence properties of these materials are tunable through careful choice of surface-passivating agents and can be exploited for both visible and NIR imaging. Here the synthetic strategy demonstrates the possibility to incorporate a potent antimetastatic agent for inhibiting melanomas in vitro. Since both particles are Raman active, their dispersion on skin surface is reported with Raman imaging and utilizing photoluminescence, their depth penetration is analysed using fluorescence 3D imaging. Our results indicate a new generation of tunable carbon-based probes for diagnosis, therapy or both.
Assuntos
Nanopartículas Metálicas/química , Nanosferas/química , Animais , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Ativação do Complemento , Humanos , Imageamento Tridimensional , Luminescência , Melanoma/metabolismo , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Imagem Molecular , Nanotubos de Carbono/química , Fotoquímica , Polímeros/química , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Luz Próxima ao Infravermelho , Análise Espectral Raman , Suínos , Temperatura , Nanomedicina TeranósticaRESUMO
CONTEXT.: Myocardial fibrosis underpins a number of cardiovascular conditions and is difficult to identify with standard histologic techniques. Challenges include imaging, defining an objective threshold for classifying fibrosis as mild or severe, and understanding the molecular basis for these changes. OBJECTIVE.: To develop a novel, rapid, label-free approach to accurately measure and quantify the extent of fibrosis in cardiac tissue using infrared spectroscopic imaging. DESIGN.: We performed infrared spectroscopic imaging and combined that with advanced machine learning-based algorithms to assess fibrosis in 15 samples from patients belonging to the following 3 classes: (1) patients with nonpathologic (control) donor hearts, (2) patients undergoing transplant, and (3) patients undergoing implantation of a ventricular assist device. RESULTS.: Our results show excellent sensitivity and accuracy for detecting myocardial fibrosis, as demonstrated by a high area under the curve of 0.998 in the receiver operating characteristic curve measured from infrared imaging. Fibrosis of various morphologic subtypes were demonstrated with virtually generated picrosirius red images, which showed good visual and quantitative agreement (correlation coefficient = 0.92, ρ = 7.76 × 10-15) with stained images of the same sections. Underlying molecular composition of the different subtypes was investigated with infrared spectra showing reproducible differences presumably arising from differences in collagen subtypes and/or crosslinking. CONCLUSIONS.: Infrared imaging can be a powerful tool in studying myocardial fibrosis and gleaning insights into the underlying chemical changes that accompany it. Emerging methods suggest that the proposed approach is compatible with conventional optical microscopy, and its consistency makes it translatable to the clinical setting for real-time diagnoses as well as for objective and quantitative research.
Assuntos
Transplante de Coração , Corantes , Fibrose , Humanos , Microscopia , Doadores de TecidosRESUMO
Precise freeform microchannels within an aqueous environment have several biomedical applications but remain a challenge to fabricate. Carbohydrate glass materials have shown potential for three-dimensionally (3D) printing precise, microscale structures and are suitable as a sacrificial material to reconstruct complex channel architectures, but due to the rapid dissolution kinetics in hydrogels and the aqueous environment, protective coatings are required. Here, conformal coatings were applied to carbohydrate structures via surface-initiated photopolymerization (SIP) by incorporating a photoinitiator (PI) into freeform 3D printed isomalt structures using a custom 3D printer. Structures were then immersed into a photocurable prepolymer bath and exposed to light for reaction initiation. To achieve uniform distribution of photoinitiator molecules in 3D printed constructs, miscibility between commercial photoinitiators and isomalt was modeled using the group contribution method. A dye-based, type-two photoinitiator, Eosin Y disodium salt (EY), was selected for its miscibility with isomalt and stability under high temperature. A previously described Eosin Y (EY)/triethanolamine (TEA) radical polymerization system was used to polymerize poly(ethylene glycol) diacrylate (PEGDA). Attenuated total reflectance-Fourier transform infrared (ATR-FTIR), surface morphology, and swelling ratio characterizations via SIP were performed. Coatings around freeform structures and solid surfaces were presented to demonstrate the capability of coating complex architectures. This coating method should facilitate the application of 3D sacrificial molding in a variety of hydrogels toward building biomimetic vascular constructs.