Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cell Biochem ; 120(5): 8169-8176, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30485517

RESUMO

BACKGROUND: Fibroblast-like synoviocytes (FLSs) play an essential role in the chronic inflammatory process of rheumatoid arthritis (RA). Carvacrol is a natural monoterpenic phenol that retains significant anti-inflammatory activity. However, the effect of carvacrol on inflammatory response in RA-FLSs has not yet been reported. The present study aimed to investigate the role of carvacrol in lipopolysaccharides (LPS)-induced inflammatory response in human RA-FLSs. METHODS: Cell viability and proliferation were measured by MTT and Cell Counting Kit-8 assays, respectively. The migration was detected by transwell assay. The production of inflammatory cytokines and matrix metalloproteinases (MMPs) were analyzed by enzyme-linked immunosorbent assay. The expressions of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), NF-κB, p38, p-p38, ERK1/2, p-ERK1/2, c-Jun N-terminal kinase (JNK), and p-JNK were detected by Western blot analysis. RESULTS: Carvacrol-inhibited LPS-induced cell proliferation and migration of RA-FLSs. The production of inflammatory cytokines, including tumor necrosis factor alpha, interleukin (IL)- 6, and IL-8, was reduced by carvacrol in LPS-induced RA-FLSs. Meanwhile, the induction of MMPs, including MMP-1, MMP-3, and MMP-13, caused by LPS stimulation was inhibited by carvacrol in RA-FLSs. Furthermore, carvacrol prevented LPS-induced activation of the TLR4/MyD88/NF-κB, p38, and ERK1/2 pathways in RA-FLSs. CONCLUSIONS: Carvacrol-mitigated LPS-induced cell proliferation, migration, and inflammation in RA-FLSs. The TLR4/MyD88/NF-κB, p38 and ERK1/2 pathways might be involved in the protective effect of carvacrol.

2.
J Org Chem ; 83(4): 2006-2017, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29394066

RESUMO

An efficient method to synthesize rutaecarpine derivatives via the gold-catalyzed selective cyclization of alkyn-tethered indoles under mild conditions is described. The alkyn-tethered indole can undergo 6-exo-dig cyclization by oxidation and sequential gold catalysis, while it goes through 7-endo-dig cyclization by gold catalysis and sequential oxidation. Substrate scope studies reveal that the selectivity of cyclization was controlled by the substrates with sp3 and sp2 hybridization of carbon at the 2 position in quinazolinone. Furthermore, the rutaecarpine scaffold was prepared in 67% yield at gram scale easily in four steps from isatoic anhydride.

3.
Chem Biol Interact ; 351: 109759, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34826399

RESUMO

Hypoxia/oxygen-sensing signally is closely associated with many tumor progressions, including osteosarcoma (OS). Previous research principally focused on the function of hypoxia-inducible factor (HIF)-1α and HIF-2α as the major hypoxia-associated transcription factors in OS, however, the role of HIF-3α has not been investigated. Our study found that HIF-3α was upregulated in OS tissues and cell lines. HIF-3α overexpression facilitated cell proliferation and invasion, and inhibited apoptosis, whereas HIF-3α knockdown showed the opposite results. Chromatin immunoprecipitation analysis revealed that lysine demethylase 3A (KDM3A) expression was transcriptionally activated by HIF-3α under hypoxia, and KDM3A occupied the SRY-box transcription factor 9 (SOX9) gene promoter region through H3 lysine 9 dimethylation (H3K9me2). Additionally, rescue results revealed that KDM3A or SOX9 overexpression reversed the effects of HIF-3α silence on cell functions. The Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway inhibitor cucurbitacin I suppressed the promotive effects of HIF-3α overexpression on cell proliferation, invasion and TAK2/STAT3 pathway. Finally, OS cell line MG-63 transfected with HIF-3α short hairpin RNA (HIF-3α shRNA) were subcutaneously injected into nude mice, and the results found that HIF-3α knockdown significantly inhibited the xenograft tumor growth of OS in vivo. In conclusion, this study reveals that HIF-3α promotes OS progression in vitro and in vivo by activating KDM3A-mediated SOX9 promoter demethylation, which may provide a potential therapeutic mechanism for OS.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Ósseas/fisiopatologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Osteossarcoma/fisiopatologia , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOX9/metabolismo , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Feminino , Humanos , Masculino , Metilação/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Transdução de Sinais/fisiologia
4.
Eur J Med Chem ; 165: 293-308, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30685528

RESUMO

Inspired by the common structural characteristics of numerous known antitumor compounds targeting DNA or topoisomerase I, 3-(benzazol-2-yl)-quinoxaline-based scaffold was designed via the combination of two important privileged structure units -quinoxaline and benzazole. Thirty novel 3-(benzazol-2-yl)-quinoxaline derivatives were synthesized and evaluated for their biological activities. The MTT assay indicated that most compounds possessed moderate to potent antiproliferation effects against MGC-803, HepG2, A549, HeLa, T-24 and WI-38 cell lines. 3-(Benzoxazol- -2-yl)-2-(N-3-dimethylaminopropyl)aminoquinoxaline (12a) exhibited the most potent cytotoxicity, with IC50 values ranging from 1.49 to 10.99 µM against the five tested cancer and one normal cell line. Agarose-gel electrophoresis assays suggested that 12a did not interact with intact DNA, but rather it strongly inhibited topoisomerase I (Topo I) via Topo I-mediated DNA unwinding to exert its anticancer activity. The molecular modeling study indicated that 12a adopt a unique mode to interact with DNA and Topo I. Detailed biological study of 12a in MGC-803 cells revealed that 12a could arrest the cell cycle in G2 phase, inducing the generation of reactive oxygen species (ROS), the fluctuation of intracellular Ca2+, and the loss of mitochondrial membrane potential (ΔΨm). Western Blot analysis indicated that 12a-treatment could significantly up-regulate the levels of pro-apoptosis proteins Bak, Bax, and Bim, down-regulate anti-apoptosis proteins Bcl-2 and Bcl-xl, and increase levels of cyclin B1 and CDKs inhibitor p21, cytochrome c, caspase-3, caspase-9 and their activated form in MGC-803 cells in a dose-dependent manner to induce cell apoptosis via a caspase-dependent intrinsic mitochondria-mediated pathway. Studies in MGC-803 xenograft tumors models demonstrated that 12a could significantly reduce tumor growth in vivo at doses as low as 6 mg/kg with low toxicity. Its convenient preparation and potent anticancer efficacy in vivo makes the 3-(benzazol-2-yl)quinoxaline scaffold a promising new chemistry entity for the development of novel chemotherapeutic agents.


Assuntos
Antineoplásicos/química , Desenho de Fármacos , Quinoxalinas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose , Cálcio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Xenoenxertos , Humanos , Quinoxalinas/síntese química , Quinoxalinas/química , Espécies Reativas de Oxigênio
6.
Biomed Pharmacother ; 85: 177-181, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27936399

RESUMO

Gastrodia elata (GE), which belongs to the Orchidaceae family, was found to possess anti-inflammatory activity. However, the effect of GE on inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) remains largely unknown. Thus, the aim of this study was to investigate the effects of GE on tumor necrosis factor-α (TNF-α)-induced inflammatory response in RA-FLS and the underlying molecular mechanism was also explored. Our results demonstrated that GE significantly attenuated TNF-α-induced IL-6 and IL-8 production in RA-FLS. GE also inhibited TNF-α-induced MMP-3 and MMP-13 expression in RA-FLS. Furthermore, pretreatment with GE significantly attenuated TNF-α-induced the expression of p-p65 and IκBα degradation in RA-FLS. In conclusion, this study demonstrated for the first time that GE attenuated inflammatory response by inhibiting the NF-κB pathway signaling in RA-FLS. Thus, GE might have a therapeutic potential towards the treatment of RA.


Assuntos
Anti-Inflamatórios/farmacologia , Antirreumáticos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Gastrodia , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Membrana Sinovial/efeitos dos fármacos , Anti-Inflamatórios/isolamento & purificação , Antirreumáticos/isolamento & purificação , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Fibroblastos/patologia , Gastrodia/química , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fosforilação , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Proteólise , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fatores de Tempo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
7.
J Med Chem ; 60(16): 6853-6866, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28745887

RESUMO

p53 inactivation is a clinically defined characteristic for cancer treatment-nonresponsiveness. It is therefore highly desirable to develop anticancer agents by restoring p53 function.1 Herein the synthesized phthalazino[1,2-b]quinazolinones were discovered as p53 activators in bladder cancer cells. 10-Bromo-5-(2-dimethylamino-ethylamino)phthalazino[1,2-b]quinazolin-8-one (5da) was identified as the most promising candidate in view of both its anticancer activity and mechanisms of action. 5da exhibited strong anticancer activity on a broad range of cancer cell lines and significantly reduced tumor growth in xenograft models at doses as low as 6 mg/kg. Furthermore, 5da caused cell cycle arrest at S/G2 phase, induced apoptosis, changed cell size, and led to cell death by increasing the proportion of sub-G1 cells. Molecular mechanism studies suggested that accumulation of phospho-p53 in mitochondria after 5da treatment resulted in conformational activation of Bak, thereby evoking cell apoptosis, finally leading to irreversible cancer cell inhibition. Our present studies furnish new insights into the molecular interactions and anticancer mechanisms of phospho-p53-dependent quinazolinone compound.


Assuntos
Antineoplásicos/farmacologia , Ftalazinas/farmacologia , Quinazolinonas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Ftalazinas/síntese química , Quinazolinonas/síntese química , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA