Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(3): e2304892, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691021

RESUMO

Layered indium selenide (InSe) is a new 2D semiconductor material with high carrier mobility, widely adjustable bandgap, and high ductility. However, its ion storage behavior and related electrochemical reaction mechanism are rarely reported. In this study, InSe nanoflakes encapsulated in conductive polypyrrole (InSe@PPy) are designed in consideration of restraining the severe volume change in the electrochemical reaction and increasing conductivity via in situ chemical oxidation polymerization. Density functional theory calculations demonstrate that the construction of heterostructure can generate an internal electric field to accelerate electron transfer via additional driving forces, offering synergistically enhanced structural stability, electrical conductivity, and Na+ diffusion process. The resulting InSe@PPy composite shows outstanding electrochemical performance in the sodium ion batteries system, achieving a high reversible capacity of 336.4 mA h g-1 after 500 cycles at 1 A g-1 and a long-term cyclic stability with capacity of 274.4 mA h g-1 after 2800 cycles at 5 A g-1 . In particular, the investigation of capacity fluctuation within the first cycling reveals the alternating significance of intercalation and conversion reactions and evanescent alloying reaction. The combined reaction mechanism of insertion, conversion, and alloying of InSe@PPy is revealed by in situ X-ray diffraction, ex situ electrochemical impedance spectroscopy, and transmission electron microscopy.

2.
J Colloid Interface Sci ; 665: 846-854, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38564948

RESUMO

The unique superconductivity and charge density wave transition characteristics of NbSe2 make it worthy of exploring its electrochemical performance and potential applications in the field of batteries. Herein, the bulk NbSe2 was successfully exfoliated into few-layered NbSe2 nanostructures by wet grinding exfoliation approach, which solved the issues of its long activation period and poor cycle stability. The strong Nb-Se bond in the plane and weak van der Waals force between the adjacent layers could render the fast Na+ diffusion, provide abundant reaction sites and multi-directional migration paths, thus accelerate the ionic conductivity. The theoretical calculations verified the high Na+ adsorption tendency between the NbSe2 interlayers stemming from the continuous region of charge accumulation. Thanks to the unique electronic and two-dimensional few-layered structures, the exfoliated NbSe2 exhibited a high cyclic stability with a capacity of 502 mA h g-1 over 2800 cycles at 10 A/g. In addition, the reaction mechanism was studied by in-situ X-ray diffraction and other tests, indicating a reaction mechanism containing of simultaneous intercalation (NbSe2↔NaxNbSe2↔NaNbSe2↔Na1+xNbSe2) and conversion processes in NbSe2. This parallelly running mechanism not only alleviates the volume change but also ensures a high specific capacity. Additionally, different lattice planes of the NaNbSe2 intermediate in the intercalation process experience varying degrees of contraction and expanding in d-spacing due to the influence of Coulombic force.

3.
J Phys Condens Matter ; 33(18)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33711822

RESUMO

Disorders have a rich influence on topological and localized properties. Here, we explore the effects of different type of disorders (intracell and intercell) on the non-Hermitian system. We first exhibit the phase diagram and find that the intracell disorder and intercell disorder can broaden and narrow the topological region, respectively. Moreover, the skin effect, which is unique in the non-Hermitian system, is broken by disorders. Furthermore, we propose the generalized localization length to settle the issue of how to determine the topological phase boundary explicitly in the disordered non-Hermitian system. Significantly, the rationality of this definition can be verified by similarity transformation, in which we prove that the topological invariant remains invariant. Finally, a byproduct of our definition is that one can analytically get the criticality of topology in the clean-limit non-Hermitian system.

4.
Sci Rep ; 8(1): 14367, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254281

RESUMO

We theoretically investigate the optomechanically induced transparency (OMIT) phenomenon in a N-cavity optomechanical system doped with a pair of Rydberg atoms with the presence of a strong control field and a weak probe field applied to the Nth cavity. It is found that 2N - 1 (N < 10) numbers of OMIT windows can be observed in the output field when N cavities couple with N mechanical oscillators and the mechanical oscillators coupled with different even- or odd-labelled cavities can lead to diverse effects on OMIT. Furthermore, the ATS effect appears with the increase of the effective optomechanical coupling rate. On the other hand, two additional transparent windows (extra resonances) occur, when two Rydberg atoms are coupled with the cavity field. With DDI strength increasing, the extra resonances move to the far off-resonant regime but the left one moves slowly than the right one due to the positive detuning effect of DDI. During this process, Fano resonance also emerges in the absorption profile of output field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA