Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37544660

RESUMO

Combination therapies have brought significant advancements to the treatment of various diseases in the medical field. However, searching for effective drug combinations remains a major challenge due to the vast number of possible combinations. Biomedical knowledge graph (KG)-based methods have shown potential in predicting effective combinations for wide spectrum of diseases, but the lack of credible negative samples has limited the prediction performance of machine learning models. To address this issue, we propose a novel model-agnostic framework that leverages existing drug-drug interaction (DDI) data as a reliable negative dataset and employs supervised contrastive learning (SCL) to transform drug embedding vectors to be more suitable for drug combination prediction. We conducted extensive experiments using various network embedding algorithms, including random walk and graph neural networks, on a biomedical KG. Our framework significantly improved performance metrics compared to the baseline framework. We also provide embedding space visualizations and case studies that demonstrate the effectiveness of our approach. This work highlights the potential of using DDI data and SCL in finding tighter decision boundaries for predicting effective drug combinations.


Assuntos
Algoritmos , Reconhecimento Automatizado de Padrão , Benchmarking , Combinação de Medicamentos , Interações Medicamentosas
2.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232792

RESUMO

Molecular and sequencing technologies have been successfully used in decoding biological mechanisms of various diseases. As revealed by many novel discoveries, the role of non-coding RNAs (ncRNAs) in understanding disease mechanisms is becoming increasingly important. Since ncRNAs primarily act as regulators of transcription, associating ncRNAs with diseases involves multiple inference steps. Leveraging the fast-accumulating high-throughput screening results, a number of computational models predicting ncRNA-disease associations have been developed. These tools suggest novel disease-related biomarkers or therapeutic targetable ncRNAs, contributing to the realization of precision medicine. In this survey, we first introduce the biological roles of different ncRNAs and summarize the databases containing ncRNA-disease associations. Then, we suggest a new trend in recent computational prediction of ncRNA-disease association, which is the mode of action (MoA) network perspective. This perspective includes integrating ncRNAs with mRNA, pathway and phenotype information. In the next section, we describe computational methodologies widely used in this research domain. Existing computational studies are then summarized in terms of their coverage of the MoA network. Lastly, we discuss the potential applications and future roles of the MoA network in terms of integrating biological mechanisms for ncRNA-disease associations.


Assuntos
Biologia Computacional , RNA não Traduzido , Biomarcadores , Biologia Computacional/métodos , RNA Mensageiro , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
3.
iScience ; 26(1): 105677, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36654861

RESUMO

Drug-induced liver injury (DILI) is the main cause of drug failure in clinical trials. The characterization of toxic compounds in terms of chemical structure is important because compounds can be metabolized to toxic substances in the liver. Traditional machine learning approaches have had limited success in predicting DILI, and emerging deep graph neural network (GNN) models are yet powerful enough to predict DILI. In this study, we developed a completely different approach, supervised subgraph mining (SSM), a strategy to mine explicit subgraph features by iteratively updating individual graph transitions to maximize DILI fidelity. Our method outperformed previous methods including state-of-the-art GNN tools in classifying DILI on two different datasets: DILIst and TDC-benchmark. We also combined the subgraph features by using SMARTS-based frequent structural pattern matching and associated them with drugs' ATC code.

4.
Comput Struct Biotechnol J ; 20: 4288-4304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051875

RESUMO

A large number of chemical compounds are available in databases such as PubChem and ZINC. However, currently known compounds, though large, represent only a fraction of possible compounds, which is known as chemical space. Many of these compounds in the databases are annotated with properties and assay data that can be used for drug discovery efforts. For this goal, a number of machine learning algorithms have been developed and recent deep learning technologies can be effectively used to navigate chemical space, especially for unknown chemical compounds, in terms of drug-related tasks. In this article, we survey how deep learning technologies can model and utilize chemical compound information in a task-oriented way by exploiting annotated properties and assay data in the chemical compounds databases. We first compile what kind of tasks are trying to be accomplished by machine learning methods. Then, we survey deep learning technologies to show their modeling power and current applications for accomplishing drug related tasks. Next, we survey deep learning techniques to address the insufficiency issue of annotated data for more effective navigation of chemical space. Chemical compound information alone may not be powerful enough for drug related tasks, thus we survey what kind of information, such as assay and gene expression data, can be used to improve the prediction power of deep learning models. Finally, we conclude this survey with four important newly developed technologies that are yet to be fully incorporated into computational analysis of chemical information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA