Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
ACS Biomater Sci Eng ; 9(4): 1733-1756, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-34436861

RESUMO

Tooth biomineralization is a dynamic and complicated process influenced by local and systemic factors. Abnormal mineralization in teeth occurs when factors related to physiologic mineralization are altered during tooth formation and after tooth maturation, resulting in microscopic and macroscopic manifestations. The present Review provides timely information on the mechanisms and structural alterations of different forms of pathological tooth mineralization. A comprehensive study of these alterations benefits diagnosis and biomimetic treatment of abnormal mineralization in patients.


Assuntos
Odontoblastos , Dente , Humanos , Calcificação Fisiológica
2.
Adv Healthc Mater ; 12(11): e2203086, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36594680

RESUMO

A poor seal of the titanium implant-soft tissue interface provokes bacterial invasion, aggravates inflammation, and ultimately results in implant failure. To ensure the long-term success of titanium implants, lactoferrin-derived amyloid is coated on the titanium surface to increase the expression of cell integrins and hemidesmosomes, with the goal of promoting soft tissue seal and imparting antibacterial activity to the implants. The lactoferrin-derived amyloid coated titanium structures contain a large number of amino and carboxyl groups on their surfaces, and promote proliferation and adhesion of epithelial cells and fibroblasts via the PI3K/AKT pathway. The amyloid coating also has a strong positive charge and possesses potent antibacterial activities against Staphylococcus aureus and Porphyromonas gingivalis. In a rat immediate implantation model, the amyloid-coated titanium implants form gingival junctional epithelium at the transmucosal region that resembles the junctional epithelium in natural teeth. This provides a strong soft tissue seal to wall off infection. Taken together, lactoferrin-derived amyloid is a dual-function transparent coating that promotes soft tissue seal and possesses antibacterial activity. These unique properties enable the synthesized amyloid to be used as potential biological implant coatings.


Assuntos
Implantes Dentários , Titânio , Ratos , Animais , Titânio/farmacologia , Titânio/química , Lactoferrina/farmacologia , Fosfatidilinositol 3-Quinases , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
3.
Carbohydr Polym ; 310: 120738, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36925258

RESUMO

Chondroitin sulfate (CS) is an important extracellular matrix component of mineralized tissues. It participates in biomineralization, osteoblast differentiation and promotes bone tissue repair in vitro. However, the mechanism in which CS functions is unclear. Accordingly, an in-depth investigation of how CS participates in mineralization was conducted in the present study. Chondroitin sulfate was found to directly induce intrafibrillar mineralization of the collagen matrix. The mineralization outcome was dependent on whether CS remained free in the extracellular matrix or bound to core proteins; mineralization only occurred when CS existed in a free state. The efficacy of mineralization appeared to increase with ascending CS concentration. This discovery spurred the authors to identify the cause of heterotopic ossification in the Achilles tendon. Chondroitin sulfate appeared to be a therapeutic target for the management of diseases associated with heterotopic calcification. A broader perspective was presented on the applications of CS in tissue engineering.


Assuntos
Biomineralização , Sulfatos de Condroitina , Sulfatos de Condroitina/farmacologia , Osso e Ossos/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo
4.
Chin J Dent Res ; 25(2): 149-158, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35686595

RESUMO

Dental implants are widely used in the rehabilitation of patients with edentulous jaws caused by periodontitis. The success of implants is closely related to their framework material and patients' periodontal health. Polyetheretherketone (PEEK) is a kind of high polymer material that has broad prospects as the framework for full-arch dental prostheses, but long-term follow-up data are lacking. The present clinical report demonstrates the use of a PEEK framework for the construction of an implant-supported full-arch fixed dental prosthesis for a patient diagnosed with periodontitis. With the guidance of biological width, a provisional retained restoration was achieved to create the emergence profile, resulting in a 3D printed PEEK framework with good aesthetics and biological functions.


Assuntos
Implantes Dentários , Periodontite , Benzofenonas , Prótese Dentária Fixada por Implante/métodos , Falha de Restauração Dentária , Estética Dentária , Seguimentos , Humanos , Cetonas , Periodontite/cirurgia , Polímeros
5.
Bioact Mater ; 15: 68-81, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35386354

RESUMO

Post-extraction bleeding and alveolar bone resorption are the two frequently encountered complications after tooth extraction that result in poor healing and rehabilitation difficulties. The present study covalently bonded polyphosphate onto a collagen scaffold (P-CS) by crosslinking. The P-CS demonstrated improved hemostatic property in a healthy rat model and an anticoagulant-treated rat model. This improvement is attributed to the increase in hydrophilicity, increased thrombin generation, platelet activation and stimulation of the intrinsic coagulation pathway. In addition, the P-CS promoted the in-situ bone regeneration and alveolar ridge preservation in a rat alveolar bone defect model. The promotion is attributed to enhanced osteogenic differentiation of bone marrow stromal cells. Osteogenesis was improved by both polyphosphate and blood clots. Taken together, P-CS possesses favorable hemostasis and alveolar ridge preservation capability. It may be used as an effective treatment option for post-extraction bleeding and alveolar bone loss. Statement of significance: Collagen scaffold is commonly used for the treatment of post-extraction bleeding and alveolar bone loss after tooth extraction. However, its application is hampered by insufficient hemostatic and osteoinductive property. Crosslinking polyphosphate with collagen produces a modified collagen scaffold that possesses improved hemostatic performance and augmented bone regeneration potential.

6.
ACS Appl Mater Interfaces ; 14(12): 14103-14119, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35306805

RESUMO

The periosteum orchestrates the microenvironment of bone regeneration, including facilitating local neuro-vascularization and regulating immune responses. To mimic the role of natural periosteum for bone repair enhancement, we adopted the principle of biomimetic mineralization to delicately inlay amorphous cerium oxide within eggshell membranes (ESMs) for the first time. Cerium from cerium oxide possesses unique ability to switch its oxidation state from cerium III to cerium IV and vice versa, which provides itself promising potential for biomedical applications. ESMs are mineralized with cerium(III, IV) oxide and examined for their biocompatibility. Apart from serving as physical barriers, periosteum-like cerium(III, IV) oxide-mineralized ESMs are biocompatible and can actively regulate immune responses and facilitate local neuro-vascularization along with early-stage bone regeneration in a murine cranial defect model. During the healing process, cerium-inlayed biomimetic periosteum can boost early osteoclastic differentiation of macrophage lineage cells, which may be the dominant mediator of the local repair microenvironment. The present work provides novel insights into expanding the definition and function of a biomimetic periosteum to boost early-stage bone repair and optimize long-term repair with robust neuro-vascularization. This new treatment strategy which employs multifunctional bone-and-periosteum-mimicking systems creates a highly concerted microenvironment to expedite bone regeneration.


Assuntos
Cério , Periósteo , Animais , Biomimética , Regeneração Óssea , Casca de Ovo , Camundongos , Osteogênese , Óxidos , Periósteo/fisiologia , Engenharia Tecidual
7.
Acta Biomater ; 136: 137-146, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571268

RESUMO

Collagen membranes crosslinked with high molecular weight polyacrylic acid (HPAA) are capable of self-mineralization via in situ intrafibrillar mineralization. These HPAA-crosslinked collagen membranes (HCM) have been shown to promote osteogenic differentiation of mesenchymal stem cells (MSCs) and enhance bone regeneration in vivo. Nevertheless, the biological triggers involved in those processes and the associated mechanisms are not known. Here, we identified the contribution of mitochondrial dynamics in HCM-mediated osteogenic differentiation of MSCs. Mitochondriogenesis markers were significantly upregulated when MSCs were cultured on HCM, committing the MSCs to osteogenic differentiation. The mitochondria fused to form an interconnected mitochondrial network in response to the high energy requirements. Mitochondrial fission in MSCs was also triggered by HCM; fission slightly declined at 14 days to restore the equilibrium in mitochondrial dynamics. Mitophagy, another event that regulates mitochondrial dynamics, occurred actively to remove dysfunctioned mitochondria and isolate damaged mitochondria from the rest of network. The mitophagy level of MSCs was significantly elevated in the presence of HCM. Taken together, the present findings indicate that upregulation of mitochondrial dynamics via mitochondriogenesis, fusion, fission and mitophagy is responsible for HCM-mediated osteogenic differentiation of MSCs. STATEMENT OF SIGNIFICANCE: High molecular weight polyacrylic acid (HPAA)-crosslinked collagen membrane (HCM) was found to promote in-situ bone regeneration because of it can stimulate osteogenic differentiation of mesenchymal stem cells (MSCs). Nevertheless, the biological triggers involved in those processes and associated mechanisms are not known. This study identifies that activation of mitochondrial dynamics is centrally involved in HCM-mediated osteogenic differentiation of MSCs. The HCM accelerates mitochondriogenesis and regulates homeostasis of the mitochondrial network in response to the increased energy demand for osteogenic differentiation. Concomitantly, mitophagy actively occurs to remove dysfunctioned mitochondria from the rest of the mitochondrial network. Identification of the involvement of mitophagy in HCM-mediated osteogenic differentiation of MSCs opens new vistas in the application of biomimetic mineralization in bone tissue regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Diferenciação Celular , Células Cultivadas , Colágeno , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , Ratos Sprague-Dawley , Regulação para Cima
8.
Acta Biomater ; 120: 213-223, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32711082

RESUMO

Involvement of thermodynamically-stable prenucleation clusters (PNCs) in the biomineralization of collagen has been speculated since their existence was reported in mineralization systems. It has been hypothesized that intrafibrillar mineralization proceeds via nucleation of inhibitor-stabilized intermediates produced by liquid-liquid separation (aka. polymer-induced liquid precursors; PILPs). Here, the contribution of PNCs and PILPs to calcium phosphate intrafibrillar mineralization of collagen was examined in a model with a semipermeable membrane that excludes nucleation inhibitor-stabilized PILPs from reaching the collagen fibrils, using cryogenic electron microscopy of reconstituted fibrils and conventional transmission electron microscopy of collagen sponges. Molecular dynamics simulation with the Interface force field (IFF) was used to confirm the existence of PILPs with amorphous calcium phosphate and elucidate details of the dynamics. Furthermore, intrafibrillar mineralization of single collagen fibrils was experimentally observed with unstabilized PNCs when anionic/cationic polyelectrolytes were used to establish Donnan equilibrium across the semipermeable membrane. Molecular dynamics simulation verified PNC formation within the collagen intrafibrillar gap zones at the atomic scale and explained the role of external PILPs. The PILPs decrease the interfibrillar water content and increase the interfibrillar ionic concentration. Nevertheless, intrafibrillar mineralization of collagen sponges with PNCs alone was inefficacious, being constrained by competition from extrafibrillar mineral precipitation. STATEMENT OF SIGNIFICANCE: Compared with conventional PILP-based intrafibrillar mineralization, mineralization of collagen fibrils using unstabilized PNCs is constrained by competition from extrafibrillar mineral deposition. The narrow window of opportunity for PNCs to produce intrafibrillar mineralization provides a plausible explanation for the feasibility of nucleation inhibitor-free intrafibrillar apatite assembly during reconstitution of type I collagen.


Assuntos
Fosfatos de Cálcio , Colágeno , Apatitas , Matriz Extracelular , Polímeros
9.
Acta Biomater ; 125: 112-125, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582360

RESUMO

Collagen membranes produced in vitro with different degrees of intrafibrillar mineralization are potentially useful for guided bone regeneration (GBR). However, highly-mineralized collagen membranes are brittle and difficult for clinical manipulation. The present study aimed at developing an intrafibrillar self-mineralization strategy for GBR membrane by covalently conjugating high-molecular weight polyacrylic acid (HPAA) on Bio-Gide® membranes (BG). The properties of the self-mineralizable membranes (HBG) and their potential to induce bone regeneration were investigated. The HBG underwent the progressive intrafibrillar mineralization as well as the increase in stiffness after immersed in supersaturated calcium phosphate solution, osteogenic medium, or after being implanted into a murine calvarial bone defect. The HBG promoted in-situ bone regeneration via stimulating osteogenic differentiation of mesenchymal stromal cells (MSCs). Hippo signaling was inhibited when MSCs were cultured on the self-mineralized HBG, and in HBG-promoted MSC osteogenesis during in-situ bone regeneration. This resulted in translocation of the transcription co-activators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) into the nucleus to induce transcription of genes promoting osteogenic differentiation of MSCs. Taken together, these findings indicated that HBG possessed the ability to self-mineralize in situ via intrafibrillar mineralization. The increase in stiffness of the extracellular matrix expedited in-situ bone regeneration by inactivating the Hippo-YAP/TAZ signaling cascade. STATEMENT OF SIGNIFICANCE: Guided bone regeneration (GBR) membranes made of naturally derived collagen have been widely used in the bone defect restoration. However, application of collagen GBR membranes run into the bottleneck with the challenges like insufficient stress strength, relatively poor dimensional stability and unsatisfactory osteoinductivity. This study develops a modified GBR membrane that can undergo progressive self-mineralization and matrix stiffening in situ. Increase in extracellular matrix stiffness provides the mechanical cues required for MSCs differentiation and expedites in-situ bone regeneration by inactivating the Hippo-YAP/TAZ signaling cascade.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Regeneração Óssea , Diferenciação Celular , Matriz Extracelular , Camundongos
10.
Acta Biomater ; 101: 69-101, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31542502

RESUMO

Failure of dental treatments is mainly due to the biofilm accumulated on the dental materials. Many investigations have been conducted on the advancements of antimicrobial dental materials. Polymeric and inorganic nanoscopical agents are capable of inhibiting microorganism proliferation. Applying them as fillers in dental materials can achieve enhanced microbicidal ability. The present review provides a broad overview on the state-of-the-art research in the field of antimicrobial fillers which have been adopted for incorporation into dental materials over the last 5 years. The antibacterial agents and applications are described, with the aim of providing information for future investigations. STATEMENT OF SIGNIFICANCE: Microbial infection is the primary cause of dental treatment failure. The present review provides an overview on the state-of-art in the field of antimicrobial nanoscopical or polymeric fillers that have been applied in dental materials. Trends in the biotechnological development of these antimicrobial fillers over the last 5 years are reviewed to provide a backdrop for further advancement in this field of research.


Assuntos
Antibacterianos , Materiais Restauradores do Canal Radicular , Antibacterianos/química , Antibacterianos/uso terapêutico , Odontologia , Humanos , Materiais Restauradores do Canal Radicular/química , Materiais Restauradores do Canal Radicular/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA