Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(46): 29025-29034, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33144503

RESUMO

As a physiological regulator of bile acid homeostasis, FGF19 is also a potent insulin sensitizer capable of normalizing plasma glucose concentration, improving lipid profile, ameliorating fatty liver disease, and causing weight loss in both diabetic and diet-induced obesity mice. There is therefore a major interest in developing FGF19 as a therapeutic agent for treating type 2 diabetes and cholestatic liver disease. However, the known tumorigenic risk associated with prolonged FGF19 administration is a major hurdle in realizing its clinical potential. Here, we show that nonmitogenic FGF19 variants that retain the full beneficial glucose-lowering and bile acid regulatory activities of WT FGF19 (FGF19WT) can be engineered by diminishing FGF19's ability to induce dimerization of its cognate FGF receptors (FGFR). As proof of principle, we generated three such variants, each with a partial defect in binding affinity to FGFR (FGF19ΔFGFR) and its coreceptors, i.e., ßklotho (FGF19ΔKLB) or heparan sulfate (FGF19ΔHBS). Pharmacological assays in WT and db/db mice confirmed that these variants incur a dramatic loss in mitogenic activity, yet are indistinguishable from FGF19WT in eliciting glycemic control and regulating bile acid synthesis. This approach provides a robust framework for the development of safer and more efficacious FGF19 analogs.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Mitógenos/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Tipo 2 , Dimerização , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/farmacologia , Engenharia Genética , Glucose/metabolismo , Células Hep G2 , Homeostase , Humanos , Proteínas Klotho , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
2.
Cell Mol Life Sci ; 78(7): 3105-3125, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33438055

RESUMO

Doxorubicin (DOX) is an anthracycline chemotherapy drug used in the treatment of various types of cancer. However, short-term and long-term cardiotoxicity limits the clinical application of DOX. Currently, dexrazoxane is the only approved treatment by the United States Food and Drug Administration to prevent DOX-induced cardiotoxicity. However, a recent study found that pre-treatment with dexrazoxane could not fully improve myocardial toxicity of DOX. Therefore, further targeted cardioprotective prophylaxis and treatment strategies are an urgent requirement for cancer patients receiving DOX treatment to reduce the occurrence of cardiotoxicity. Accumulating evidence manifested that Sirtuin 1 (SIRT1) could play a crucially protective role in heart diseases. Recently, numerous studies have concentrated on the role of SIRT1 in DOX-induced cardiotoxicity, which might be related to the activity and deacetylation of SIRT1 downstream targets. Therefore, the aim of this review was to summarize the recent advances related to the protective effects, mechanisms, and deficiencies in clinical application of SIRT1 in DOX-induced cardiotoxicity. Also, the pharmaceutical preparations that activate SIRT1 and affect DOX-induced cardiotoxicity have been listed in this review.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxicidade/prevenção & controle , Doxorrubicina/efeitos adversos , Sirtuína 1/uso terapêutico , Animais , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Humanos , Transdução de Sinais
3.
J Youth Adolesc ; 51(8): 1597-1610, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35474403

RESUMO

Research suggests that genetic variants that regulate the hypothalamic-pituitary-adrenal (HPA) axis function moderate the association between parenting and anxiety symptoms, but these studies have primarily focused on (i) individual genes with very small and unreliable effect and (ii) the role of mothers as opposed to fathers. Using a multilocus genetic profile score approach, the current study is the first to examine the moderation effect of HPA-axis multilocus genetic variants on the associations of both maternal and paternal parenting with adolescent anxiety symptoms. In a sample of Chinese Han adolescents (N = 772; 50.1% girls; Mage = 16.48 ± 1.40 years, range: 15-20 years), a theory-driven multilocus genetic profile score was computed by counting the numbers of alleles that were previously linked to heightened stress reactivity in six HPA-axis related genes. This HPA-axis related multilocus genetic profile score equivalently interacted with both maternal and paternal parenting in the prediction of adolescent anxiety symptoms. Consistent with cumulative polygenic plasticity hypothesis of differential susceptibility model, adolescents with more versus low alleles linked to heightened stress reactivity not only suffered more from poor maternal or paternal parenting quality, but also benefited more from high maternal or paternal parenting quality. However, none of the individual HPA-axis genes within this multilocus genetic profile score yielded a significant gene-by-environment (G × E) interaction when examined in isolation. The findings survived after internal replication analysis and a novel, valid influence statistic DFBETAS analysis, demonstrating the robustness of the results. The current study highlights the potential value of using a multilocus approach to understand G × E effects underlying anxiety symptoms and emphasizes the role of both mothers and fathers in such gene-parenting interactions, especially in Chinese families.


Assuntos
Ansiedade , Sistema Hipotálamo-Hipofisário , Poder Familiar , Sistema Hipófise-Suprarrenal , Adolescente , Ansiedade/genética , Feminino , Variação Genética , Humanos , Hidrocortisona , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Herança Multifatorial , Sistema Hipófise-Suprarrenal/fisiologia , Estresse Psicológico/genética , Adulto Jovem
4.
Pharmacol Res ; 169: 105596, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33831565

RESUMO

Fibroblast growth factor 1 (FGF1) has a critical regulatory role in the development of the cardiovascular system (CVS) and is strongly associated with the progression or treatment of cardiovascular diseases (CVDs). However, the regulatory mechanisms of FGF1 in CVS and CVDs have not yet been fully elucidated. Therefore, this review article summarized the existing literature reports on the role of FGF1 in CVS under physiological and pathological conditions. First, the expression and physiological functions of endogenous FGF1 is fully demonstrated. Then, we analyzed the role of exogenous FGF1 in normal CVS and related pathological processes. Specifically, the potential signaling pathways might be mediated by FGF1 in CVDs treatment is discussed in detail. In addition, the barriers and feasible solutions for the application of FGF1 are further analyzed. Finally, we highlight therapeutic considerations of FGF1 for CVDs in the future. Thus, this article may be as a reference to provide some ideas for the follow-up research.


Assuntos
Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/efeitos dos fármacos , Fator 1 de Crescimento de Fibroblastos/fisiologia , Animais , Doenças Cardiovasculares/fisiopatologia , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Sistema Cardiovascular/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Humanos
5.
Pharmacol Res ; 164: 105331, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285232

RESUMO

Sestrin2 (Sesn2) is a powerful anti-oxidant that can prevent acute and chronic diseases. The role of Sesn2 has been thoroughly reviewed in liver, nervous system, and immune system diseases. However, there is a limited number of reviews that have summarized the effects of Sesn2 in heart and vascular diseases, and very less literature-based information is available on involvement of Sesn2 in renal and respiratory pathologies. This review summarizes the latest research on Sesn2 in multi-organ stress responses, with a particular focus on the protective role of Sesn2 in cardiovascular, respiratory, and renal diseases, emphasizing the potential therapeutic benefit of targeting Sesn2 in stress-related diseases.


Assuntos
Proteínas Nucleares/metabolismo , Animais , Cardiopatias/metabolismo , Humanos , Nefropatias/metabolismo , Doenças Respiratórias/metabolismo , Estresse Fisiológico , Doenças Vasculares/metabolismo
6.
Circ J ; 84(8): 1304-1311, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32581152

RESUMO

BACKGROUND: Cardiac ischemia/reperfusion (I/R) injury will cause a large amount of cardiomyocyte loss and cascade reactions such as apoptosis, mitochondrial dysfunction, and excessive autophagy. Mesenchymal stem cells (MSCs) are promising therapeutic tools to replace damaged cardiomyocytes, but the underlying mechanism is still unknown.Methods and Results:Exosomes contain many microRNAs and protein, which are believed to have multiple biological functions. This study explored the role of bone marrow MSCs (BMMSCs)-derived exosomes under different oxidation levels in heart protection and miRNA-related mechanisms. Exosomes extracted from BMMSCs contained a high level of miR-29c, and its expression level changed after cells were treated under hypoxia/reoxygenation (H/R) conditions. In vivo I/R experiments also confirmed an expression change of miR-29c, and PTEN-Akt-mTOR is one of the predominant pathways that regulate autophagic change during this process. CONCLUSIONS: This study highlighted the role of miR-29c in regulating autophagy under cardiac I/R injury, which also extended existing mechanisms of a stem cell and its derivative to explore potential therapeutic interventions in ischemic heart diseases.


Assuntos
Autofagia , Exossomos/transplante , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/enzimologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transplante de Células-Tronco , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Exossomos/genética , Exossomos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais
7.
Am J Physiol Endocrinol Metab ; 315(2): E150-E162, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29634312

RESUMO

Vascular complications are common pathologies associated with type 1 diabetes. In recent years, histone deacetylation enzyme (HDAC) inhibitors have been shown to be successful in preventing atherosclerosis. To investigate the mechanism for HDAC3 inhibition in preventing diabetic aortic pathologies, male OVE26 type 1 diabetic mice and age-matched wild-type (FVB) mice were given the HDAC3-specific inhibitor RGFP-966 or vehicle for 3 mo. These mice were then euthanized immediately or maintained for an additional 3 mo without treatment. Levels of aortic inflammation and fibrosis and plasma and fibroblast growth factor 21 (FGF21) levels were determined. Because the liver is the major organ for FGF21 synthesis in diabetic animals, the effects of HDAC3 inhibition on hepatic FGF21 synthesis were examined. Additionally, hepatic miR-200a and kelch-like ECH-associated protein 1 (Keap1) expression and nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation were measured. HDAC3 inhibition significantly reduced aortic fibrosis and inflammation in OVE26 mice at both 3 and 6 mo. Plasma FGF21 levels were significantly higher in RGFP-966-treated OVE26 mice compared with vehicle-treated mice at both time points. It also significantly reduced hepatic pathologies associated with diabetes, accompanied by increased FGF21 mRNA and protein expression. HDAC3 inhibition also increased miR-200a expression, reduced Keap1 protein levels, and increased Nrf2 nuclear translocation with an upregulation of antioxidant gene and FGF21 transcription. Our results support a model where HDAC3 inhibition may promote Nrf2 activity by increasing miR-200a expression with a concomitant decrease in Keap1 to preserve hepatic FGF21 synthesis. The preservation of hepatic FGF21 synthesis ultimately leads to a reduction in diabetes-induced aorta pathologies.


Assuntos
Aorta/efeitos dos fármacos , Cardiotônicos/farmacologia , Complicações do Diabetes/prevenção & controle , Diabetes Mellitus Tipo 1/metabolismo , Fatores de Crescimento de Fibroblastos/biossíntese , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/efeitos dos fármacos , Hepatopatias/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Fibrose/patologia , Fibrose/prevenção & controle , Inflamação/patologia , Inflamação/prevenção & controle , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Hepatopatias/etiologia , Hepatopatias/patologia , Masculino , Camundongos , MicroRNAs/metabolismo
8.
Biochem Biophys Res Commun ; 496(1): 70-75, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29305864

RESUMO

Fenofibrate is the most widely used lipid-lowering drug, but it seems to have anti-tumor effects in several tumor cell lines. However, there are only a few reports on its effects on human prostate cancer cells. Thus, we investigated the anti-proliferative effects of fenofibrate on human prostate cancer cells and potential mechanisms. The methods used include cell viability analysis with an MTT assay, as well as apoptosis and related signaling pathway analyses with flow cytometry and Western blotting. Fenofibrate inhibited PC-3 cell growth in dose- and time-dependent manners. The fenofibrate-induced cell death is predominantly apoptotic death that is mediated by both the caspase-3 activation and apoptosis-inducing factor (AIF) signaling pathways. Fenofibrate also increased the expression of Bad and decreased the expression of Bcl-2 and Survivin. Mechanistically, fenofibrate-induced cell death was associated with decreased p-p70S6K and the mammalian target of rapamycin (mTOR) phosphorylation levels. When further exploring the upstream mediators of mTOR/p70S6K, we found that fenofibrate increased p38 MAPK and AMPK phosphorylation but did not significantly change the phosphorylation levels of PI3K, AKT, and JNK. However, the inhibition of either p38 MAPK or AMPK with their specific inhibitor did not change the effect of fenofibrate-induced cell death. These findings suggested that fenofibrate indeed significantly inhibited the proliferation of PC-3 cells via apoptotic action, which is associated with the inactivation of the mTOR/p70S6K-dependent cell survival pathway. Although the mechanisms by which fenofibrate inactivates this pathway remains unclear, this study reveals great potential for its use for the clinical treatment of prostate cancers.


Assuntos
Apoptose/efeitos dos fármacos , Fenofibrato/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Humanos , Masculino , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/patologia , Transdução de Sinais/efeitos dos fármacos
9.
J Cell Mol Med ; 21(6): 1182-1192, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28158919

RESUMO

Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation.


Assuntos
Proteína 10 de Linfoma CCL de Células B/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Cardiomegalia/tratamento farmacológico , Metalotioneína/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Cardiomegalia/etiologia , Cardiomegalia/genética , Cardiomegalia/patologia , Dieta Hiperlipídica , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/administração & dosagem , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , Estresse Oxidativo/efeitos dos fármacos , Piridinas/administração & dosagem , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Zinco/administração & dosagem , Zinco/deficiência
10.
Diabetologia ; 59(7): 1558-1568, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27115417

RESUMO

AIMS/HYPOTHESIS: Diabetic nephropathy is the leading cause of end-stage renal disease. Previously we reported that C66, a novel analogue of curcumin with a very high bioavailability, ameliorated diabetic nephropathy in mice, with little known about the mechanism. The present study aimed to define the mechanism by which C66 ameliorates diabetic nephropathy. METHODS: Our aim was to discover whether C66 acts through the activation of nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or NRF2), which governs the antioxidant response. Streptozotocin-induced Nrf2 (also known as Nfe2l2)-knockout and wild-type (WT) diabetic mice were treated with C66. To determine whether the actions of C66 on NRF2 are mediated by microRNA (miR)-200a, WT diabetic mice were treated with C66 in the presence or absence of an in vivo miR-200a inhibitor (locked nucleic acid-modified anti-miR-200a [LNA-200a]) for 6 months. To determine whether miR-21 downregulation provided an NRF2-independent basis for C66 protection, Nrf2-knockout diabetic mice were treated with either C66 or an inhibitor of miR-21 (locked nucleic acid-modified anti-miR-21 [LNA-21]). RESULTS: Deletion of Nrf2 partially abolished diabetic nephropathy protection by C66, confirming the requirement of NRF2 for this protection. Diabetic mice, but not C66-treated diabetic mice, developed significant albuminuria, renal oxidative damage and fibrosis. C66 upregulated renal miR-200a, inhibited kelch-like ECH-associated protein 1 and induced NRF2 function, effects that were prevented by LNA-200a. However, LNA-200a only partially reduced the protection afforded by C66, suggesting the existence of miR-200a/NRF2-independent mechanisms for C66 protection. C66 was also found to inhibit diabetes induction of miR-21. Both C66 and LNA-21 produced similar reductions in miR-21, albuminuria and renal fibrosis. CONCLUSIONS/INTERPRETATION: The present study indicates that in addition to upregulating NRF2 by increasing miR-200a, C66 also protects against diabetic nephropathy by inhibiting miR-21.


Assuntos
Curcumina/uso terapêutico , Nefropatias Diabéticas/metabolismo , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Western Blotting , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Heterozigoto , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética
11.
Cancer Immunol Immunother ; 65(6): 677-88, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27034233

RESUMO

The phenotypic diversity of tumor-associated macrophages (TAMs) increases with tumor development. One of the hallmarks of malignancy is the polarization of TAMs from a pro-immune (M1) phenotype to an immunosuppressive (M2) phenotype. However, the molecular basis of this process is still unclear. Endostatin is a powerful inhibitor of angiogenesis capable of suppressing tumor growth and metastasis. Here, we demonstrate that endostatin induces RAW264.7 cell polarization toward the M1 phenotype in vitro. Endostatin has no effect on TAM numbers in vivo, but results in an increased proportion of F4/80(+)Nos2(+) cells and a decreased proportion of F4/80(+)CD206(+) cells. Overexpression of endostatin in RAW264.7 cells resulted in a decrease in the phosphorylation of STAT3, an increase in expression of vascular endothelial growth factor A and placental growth factor, and an increase in the phosphorylation of STAT1, IκBα and p65 proteins compared with controls. These results indicate that endostatin regulates macrophage polarization, promoting the M1 phenotype by targeting NF-κB and STAT signaling.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/imunologia , Endostatinas/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Fenótipo , Animais , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Endostatinas/genética , Feminino , Expressão Gênica , Camundongos , Carga Tumoral/efeitos dos fármacos
12.
Clin Sci (Lond) ; 130(8): 625-41, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26795437

RESUMO

Fenofibrate (FF), as a peroxisome-proliferator-activated receptor α (PPARα) agonist, has been used clinically for decades to lower lipid levels. In the present study, we examined whether FF can be repurposed to prevent the pathogenesi of the heart in Type 1 diabetes and to describe the underlying mechanism of its action. Streptozotocin (STZ)-induced diabetic mice and their age-matched control mice were treated with vehicle or FF by gavage every other day for 3 or 6 months. FF prevented diabetes-induced cardiac dysfunction (e.g. decreased ejection fraction and hypertrophy), inflammation and remodelling. FF also increased cardiac expression of fibroblast growth factor 21 (FGF21) and sirtuin 1 (Sirt1) in non-diabetic and diabetic conditions. Deletion of FGF21 gene (FGF21-KO) worsened diabetes-induced pathogenic effects in the heart. FF treatment prevented heart deterioration in the wild-type diabetic mice, but could not do so in the FGF21-KO diabetic mice although the systemic lipid profile was lowered in both wild-type and FGF21-KO diabetic mice. Mechanistically, FF treatment prevented diabetes-impaired autophagy, reflected by increased microtubule-associated protein 1A/1B-light chain 3, in the wild-type diabetic mice but not in the FGF21-KO diabetic mice. Studies with H9C2 cells in vitro demonstrated that exposure to high glucose (HG) significantly increased inflammatory response, oxidative stress and pro-fibrotic response and also significantly inhibited autophagy. These effects of HG were prevented by FF treatment. Inhibition of either autophagy by 3-methyladenine (3MA) or Sirt1 by sirtinol (SI) abolished FF's prevention of HG-induced effects. These results suggested that FF could prevent Type 1 diabetes-induced pathological and functional abnormalities of the heart by increasing FGF21 that may up-regulate Sirt1-mediated autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Fenofibrato/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Miocardite/prevenção & controle , Miocárdio/enzimologia , Sirtuína 1/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Animais , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/patologia , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Fatores de Crescimento de Fibroblastos/deficiência , Fatores de Crescimento de Fibroblastos/genética , Fibrose , Inibidores de Histona Desacetilases/farmacologia , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocardite/enzimologia , Miocardite/etiologia , Miocardite/patologia , Miocardite/fisiopatologia , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
13.
Diabetologia ; 58(8): 1937-48, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26040473

RESUMO

AIMS/HYPOTHESIS: This study investigated fibroblast growth factor 21 (FGF21)-mediated cardiac protection against apoptosis caused by diabetic lipotoxicity and explored the protective mechanisms involved. METHODS: Cardiac Fgf21 mRNA expression was examined in a diabetic mouse model using real-time PCR. After pre-incubation of palmitate-treated cardiac H9c2 cells and primary cardiomyocytes with FGF21 for 15 h, apoptosis and Fgf21-induced cell-survival signalling were investigated using small interfering (si)RNA and/or pharmacological inhibitors. We also examined the cardiac apoptotic signalling and structural and functional indices in wild-type and Fgf21-knockout (Fgf21-KO) diabetic mice. RESULTS: In a mouse model of type 1 diabetes, cardiac Fgf21 expression was upregulated about 40-fold at 2 months and 3-1.5-fold at 4 and 6 months after diabetes. FGF21 significantly reduced palmitate-induced cardiac apoptosis. Mechanistically, palmitate downregulated, but FGF21 upregulated, phosphorylation levels of extracellular signal-regulated kinase (ERK)1/2, mitogen-activated protein kinase 14 (p38 MAPK) and AMP-activated protein kinase (AMPK). Inhibition of each kinase with its inhibitor and/or siRNA revealed that FGF21 prevents palmitate-induced cardiac apoptosis via upregulating the ERK1/2-dependent p38 MAPK-AMPK signalling pathway. In vivo administration of FGF21, but not FGF21 plus ERK1/2 inhibitor, to diabetic or fatty-acid-infused mice significantly prevented cardiac apoptosis and reduced inactivation of ERK1/2, p38 MAPK and AMPK and prevented cardiac remodelling and dysfunction. The Fgf21-KO mice were more susceptible to diabetes-induced cardiac apoptosis, and this could be prevented by administration of FGF21. Deletion of Fgf21 did not further exacerbate cardiac dysfunction. CONCLUSIONS/INTERPRETATION: These results demonstrate that FGF21 prevents lipid- or diabetes-induced cardiac apoptosis by activating the ERK1/2-p38 MAPK-AMPK pathway. FGF21 may be a therapeutic target for the treatment of diabetes-related cardiac damage.


Assuntos
Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Coração/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miocárdio/metabolismo , Animais , Apoptose/fisiologia , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Camundongos Knockout , Fosforilação
14.
J Mol Cell Cardiol ; 77: 42-52, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25268649

RESUMO

Type 2 diabetes mellitus (T2DM)-induced cardiomyopathy is associated with cardiac oxidative stress, inflammation, and remodeling. Sulforaphane (SFN), an isothiocyanate naturally presenting in widely consumed vegetables, particularly broccoli, plays an important role in cardiac protection from diabetes. We investigated the effect of SFN on T2DM-induced cardiac lipid accumulation and subsequent cardiomyopathy. Male C57BL/6J mice were fed a high-fat diet for 3months to induce insulin resistance, followed by a treatment with 100mg/kg body-weight streptozotocin to induce hyperglycemia; we referred to it as the T2DM mouse model. Other age-matched mice were fed a normal diet as control. T2DM and control mice were treated with or without 4-month SFN at 0.5mg/kg daily five days a week. At the study's end, cardiac function was assessed. SFN treatment significantly attenuated cardiac remodeling and dysfunction induced by T2DM. SFN treatment also significantly inhibited cardiac lipid accumulation, measured by Oil Red O staining, and improved cardiac inflammation oxidative stress and fibrosis, shown by down-regulating diabetes-induced PAI-1, TNF-α, CTGF, TGF-ß, 3-NT, and 4-HNE expression. Elevated 4-HNE resulted in the increase of 4-HNE-LKB1 adducts that should inhibit LKB1 and subsequent AMPK activity. SFN upregulated the expression of Nrf2 and its downstream genes, NQO1 and HO-1, decreased 4-HNE-LKB1 adducts and then reversed diabetes-induced inhibition of LKB1/AMPK and its downstream targets, including sirtuin 1, PGC-1α, phosphorylated acetyl-CoA carboxylase, carnitine palmitoyl transferase-1, ULK1, and light chain-3 II. These results suggest that SFN treatment to T2DM mice may attenuate the cardiac oxidative stress-induced inhibition of LKB1/AMPK signaling pathway, thereby preventing T2DM-induced lipotoxicity and cardiomyopathy.


Assuntos
Cardiotônicos/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/prevenção & controle , Isotiocianatos/uso terapêutico , Estresse Oxidativo , Proteínas Quinases Ativadas por AMP , Adenilato Quinase/metabolismo , Animais , Autofagia , Cardiotônicos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Isotiocianatos/farmacologia , Metabolismo dos Lipídeos , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Sulfóxidos
15.
Mol Cell Biochem ; 392(1-2): 135-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24676542

RESUMO

Arsenic trioxide (ATO) has been successfully used to treat leukemia and some solid malignant tumors. Our previous study regarding the effects of ATO on mesenchymal-derived human osteosarcoma MG63 cells showed that heme oxygenase-1 (HO-1) was strongly induced upon treatment with ATO. The present study sought to investigate the effect of silencing HO-1 on the sensitivity of osteosarcoma cells to ATO to determine the potential for therapeutic applications. Small hairpin RNA (shRNA)-mediated interference was used to silence HO-1 in MG63 cells. Viability, apoptosis, and intracellular reactive oxygen species (ROS) of the cells were assessed to evaluate the sensitivity of the cells to ATO as well as the potential mechanisms responsible. shRNA-mediated interference prevented the induction of HO-1, increased cell death, and increased intracellular ROS levels in MG63 cells upon treatment with ATO. Silencing HO-1 increased the susceptibility of MG63 cells to the chemotherapeutic drug ATO by enhancing intracellular accumulation of ROS. Our results suggest that the inhibition of HO-1 could improve the outcome of osteosarcoma treated with ATO.


Assuntos
Arsenicais/farmacologia , Neoplasias Ósseas/patologia , Inativação Gênica , Heme Oxigenase-1/genética , Osteossarcoma/patologia , Óxidos/farmacologia , Apoptose/efeitos dos fármacos , Trióxido de Arsênio , Sequência de Bases , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Primers do DNA , Humanos , Osteossarcoma/metabolismo , Reação em Cadeia da Polimerase , Espécies Reativas de Oxigênio/metabolismo
16.
Child Abuse Negl ; 149: 106683, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38335561

RESUMO

BACKGROUND: Despite a growing body of evidence showing both genetic and environmental influences on adolescent depression and anxiety, the involved comorbid mechanisms regarding gene-by-environment (G × E) interaction remain unclear. OBJECTIVE: The current study was the first to investigate the extent to which multilocus hypothalamic-pituitary-adrenal (HPA)-axis genetic variants moderated the association between childhood maltreatment and adolescent comorbid depression and anxiety. METHODS: The participants were 827 Chinese Han adolescents (Mage = 16.45 ± 1.37 years; 50.2 % girls). A theory-driven multilocus genetic profile score (MGPS) was computed by calculating alleles of core HPA-axis genes (CRHR1, NR3C1, NR3C2, and FKBP5) associated with heightened stress reactivity. Childhood maltreatment was retrospectively collected using Childhood Trauma Questionnaire. Comorbidity profiles of self-reported adolescent depressive and anxiety symptoms were constructed via person-centered latent profile analysis. RESULTS: Three heterogeneous comorbidity profiles of depressive and anxiety symptoms were identified: comorbid severe symptoms (9.7 %), comorbid moderate symptoms (46.4 %) and comorbid mild symptoms (43.9 %). The HPA-axis related MGPS significantly interacted with childhood maltreatment, especially emotional maltreatment (emotional abuse: OR = 1.14, 95 % CI [1.03, 1.26], p < .01; emotional neglect: OR = 1.07, 95 % CI [1.01, 1.13], p < .05), to distinguish the comorbid severe symptoms profile from the comorbid mild symptoms profile (OR = 1.03, 95 % CI [1.01, 1.06], p < .05). CONCLUSION: The HPA-axis related genes showed an additive polygenic sensitivity toward childhood maltreatment, which might be one of the polygenic G × E mechanisms underlying adolescent comorbid depression and anxiety.


Assuntos
Maus-Tratos Infantis , Testes Psicológicos , Autorrelato , Estresse Psicológico , Feminino , Humanos , Adolescente , Masculino , Criança , Estudos Retrospectivos , Ansiedade/epidemiologia , Ansiedade/genética , Comorbidade , Variação Genética/genética , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal
17.
Nutr Rev ; 82(3): 361-373, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37226405

RESUMO

Despite intensive studies for decades, the common mechanistic correlations among the underlying pathology of diabetes mellitus (DM), its complications, and effective clinical treatments remain poorly characterized. High-quality diets and nutrition therapy have played an indispensable role in the management of DM. More importantly, tribbles homolog 3 (TRIB3), a nutrient-sensing and glucose-responsive regulator, might be an important stress-regulatory switch, linking glucose homeostasis and insulin resistance. Therefore, this review aimed to introduce the latest research progress on the crosstalk between dietary nutrition intervention and TRIB3 in the development and treatment of DM. This study also summarized the possible mechanisms involved in the signaling pathways of TRIB3 action in DM, in order to gain an in-depth understanding of dietary nutrition intervention and TRIB3 in the pathogenesis of DM at the organism level.


Assuntos
Diabetes Mellitus , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Dieta , Proteínas Repressoras/metabolismo
18.
J Adv Res ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019110

RESUMO

INTRODUCTION: Lipid metabolism disorders have been confirmed to be closely related to kidney injury caused by adriamycin (ADR) and obesity, respectively. However, it has not been explored whether lipid metabolism disorders are related to kidney injury caused by ADR aggravated by obesity, and the specific molecular mechanism needs to be further clarified. OBJECTIVES: This study was designed to examine the role of p53-fibroblast growth factor 21 (FGF21) axis in ADR-induced renal injury aggravated by high fat diet (HFD). METHODS: We engineered Fgf21 KO mice and used long-term (4 months) and short-term (0.5 months) HFD feeding, and ADR-injected mice, as well as STZ-induced type 1 diabetic mice and type 2 (db/db) diabetic mice to produce a in vivo model of nephrotoxicity. The specific effects of p53/FGF21 on regulation of lipid metabolism disorders and its downstream mediators in kidney were subsequently elucidated using a combination of functional and pathological analysis, RNA-sequencing, molecular biology and in vitro approaches. RESULTS: Long-term HFD feeding mice exhibited compromised effects of FGF21 on alleviation of renal dysfunction and lipid accumulation following ADR administration. However, these impairments were reversed by p53 inhibitor (pifithrin-α, PFT-α). PFT-α sensitized FGF21 actions in kidney tissues, while knockout of Fgf21 impaired the protective effects of PFT-α on lipid metabolism. Mechanistically, p53 impaired the renal expression of FGF recepter-1 (FGFR1) and thereby developed gradually into FGF21 resistance via inhibiting hepatocyte nuclear factor alpha (HNF4α)-mediated transcriptional activation of Fgfr1. More importantly, exogenous supplementation of FGF21 or PFT-α could not only alleviate ADR-induced lipid metabolism disorder aggravated by HFD, but also reduce lipid accumulation caused by diabetic nephropathy. CONCLUSION: Given the difficulties in developing the long-acting recombinant FGF21 analogs for therapeutic applications, sensitizing obesity-impaired FGF21 actions by suppression of p53 might be a therapeutic strategy for maintaining renal metabolic homeostasis during chemotherapy.

19.
Antioxid Redox Signal ; 40(10-12): 598-615, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37265150

RESUMO

Aims: Obese patients are highly sensitive to adriamycin (ADR)-induced cardiotoxicity. However, the potential mechanism of superimposed toxicity remains to be elucidated. Sestrin 2 (SESN2), a potential antioxidant, could attenuate stress-induced cardiomyopathy; therefore, this study aims to explore whether SESN2 enhances cardiac resistance to ADR-induced oxidative damage in high-fat diet (HFD)-induced obese mice. Results: The results revealed that obesity decreased SESN2 expression in ADR-exposed heart. And, HFD mice may predispose to ADR-induced cardiotoxicity, which was probably associated with inhibiting protein kinase B (AKT), glycogen synthase kinase-3 beta (GSK-3ß) phosphorylation and subsequently blocking nuclear localization of nuclear factor erythroid-2 related factor 2 (NRF2), ultimately resulting in cardiac oxidative damage. However, these destructive cascades and cardiac oxidative damage effects induced by HFD/sodium palmitate combined with ADR were blocked by overexpression of SESN2. Moreover, the antioxidant effect of SESN2 could be largely abolished by sh-Nrf2 or wortmannin. And sulforaphane, an NRF2 agonist, could remarkably reverse cardiac pathological and functional abnormalities caused by ADR in obese mice. Innovation and Conclusion: This study demonstrated that SESN2 might be a promising therapeutic target for improving anthracycline-related cardiotoxicity in obesity by upregulating activity of NRF2 via AKT/GSK-3ß/Src family tyrosine kinase signaling pathway. Antioxid. Redox Signal. 40, 598-615.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Antioxidantes/metabolismo , Cardiotoxicidade , Dieta Hiperlipídica/efeitos adversos , Doxorrubicina/toxicidade , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Obesos , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sestrinas/metabolismo
20.
Nutrients ; 15(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37432408

RESUMO

Quercetin is a natural flavonoid widely found in natural fruits and vegetables. Recent studies have shown that quercetin mediates multiple beneficial effects in a variety of organ damage and diseases, and is considered a healthcare supplement with health-promoting potential. Male infertility is a major health concern, and testicular damage from multiple causes is an important etiology. Previous studies have shown that quercetin has a protective effect on reproductive function. This may be related to the antioxidant, anti-inflammatory, and anti-apoptotic biological activities of quercetin. Therefore, this paper reviews the mechanisms by which quercetin exerts its pharmacological activity and its role in testicular damage induced by various etiologies. In addition, this paper compiles the application of quercetin in clinical trials, demonstrating its practical effects in regulating blood pressure and inhibiting cellular senescence in human patients. However, more in-depth experimental studies and clinical trials are needed to confirm the true value of quercetin for the prevention and protection against testicular injury.


Assuntos
Flavonoides , Quercetina , Humanos , Masculino , Quercetina/farmacologia , Quercetina/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Pressão Sanguínea , Senescência Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA