Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(5): 1919-1929, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36646647

RESUMO

Little is known about the sources and environmental behavior of organophosphate esters (OPEs) in the Arctic, especially their transformation products. The present study unprecedentedly investigated both 16 tri-OPEs and 8 di-OPEs in proglacial and ocean sediments from Ny-Ålesund, the Arctic. Mean concentrations of tri-OPEs and di-OPEs in proglacial sediments were 487 and 341 pg/g dry weight (dw), respectively, which were significantly lower than those in ocean sediments (1692 and 525 pg/g dw). Ocean sediments might be simultaneously influenced by long-range atmospheric transport (LRAT), oceanic transport, and human activities, whereas proglacial sediments, since they are isolated from human settlements, may be dominantly affected by LRAT. Such source difference was evidenced by the contamination profile of OPEs: chlorinated tri-OPEs with high environmental persistence and high LRAT were dominant in proglacial sediments (66%); however, weakly environmentally persistent and highly hydrophobic aryl tri-OPEs were dominant in ocean sediments (47%), which were plausibly from local emission sources due to their low LRAT potential. Di-OPEs in proglacial and ocean sediments were dominated by groups of parent tri-OPEs with strong photodegradability, such as alkyl (75%) and aryl (58%). A higher mean molar ratio of di-OPE/tri-OPE in the proglacial sediment (14) than that in the ocean sediment (2.2) may be related to its higher photodegradation than that of the ocean sediment.


Assuntos
Monitoramento Ambiental , Retardadores de Chama , Humanos , Retardadores de Chama/análise , Ésteres , Oceanos e Mares , Organofosfatos/análise , China
2.
Environ Sci Technol ; 57(25): 9130-9139, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37261382

RESUMO

Large numbers of pollutants competitively inhibit the binding between thyroid hormones and transthyretin (TTR) in vitro. However, the impact of this unintended binding on free thyroid hormones in vivo has not yet been characterized. Herein, we established a quantitative in vitro to in vivo extrapolation (QIVIVE) method based on a competitive binding model to quantify the effect of TTR-binding chemicals on free thyroid hormones in human blood. Twenty-five TTR-binding chemicals including 6 hydroxyl polybromodiphenyl ethers (OH-PDBEs), 6 hydroxyl polychlorobiphenyls (OH-PCBs), 4 halogenphenols, 5 per- and polyfluorinated substances (PFASs), and 4 phenols were selected for investigation. Incorporating the in vitro binding parameters and human exposure data, the QIVIVE model could well predict the in vivo effect on free thyroid hormones. Co-exposure to twenty-five typical TTR-binding chemicals resulted in median increases of 0.080 and 0.060% in circulating levels of free thyroxine (FT4) and free triiodothyronine (FT3) in the general population. Individuals with occupational exposure to TTR-binding chemicals suffered 1.88-32.2% increases in free thyroid hormone levels. This study provides a quantitative tool to evaluate the thyroid-disrupting risks of TTR-binding chemicals and proposes a new framework for assessing the in vivo effects of chemical exposures on endogenous molecules.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Pré-Albumina , Hormônios Tireóideos , Humanos , Ligação Competitiva , Bifenilos Policlorados/metabolismo , Pré-Albumina/metabolismo , Hormônios Tireóideos/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo
3.
Water Res ; 240: 120083, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224669

RESUMO

Organophosphate esters (OPEs), as an important class of new pollutants, have been pervasively detected in global aquatic products, arousing widespread public concern due to their potential bioaccumulative behavior and consequent risks. With the continuous improvement of living standards of citizens, there have been constant increment of the proportion of aquatic products in diets of people. The levels of OPEs exposed to residents may also be rising due to the augmented consumption of aquatic products, posing potential hazards on human health, especially for people in coastal areas. The present study integrated the concentrations, profiles, bioaccumulation, and trophic transfer of OPEs in global aquatic products, including Mollusca, Crustacea, and fish, evaluated health risks of OPEs through aquatic products in daily diets by Mont Carol Simulation (MCS), and found Asia has been the most polluted area in terms of the concentration of OPEs in aquatic products, and would have been increasingly polluted. Among all studied OPEs, chlorinated OPEs generally showed accumulation predominance. It is worth noting that some OPEs were found bioaccumulated and/or biomagnified in aquatic ecosystems. Though MCS revealed relative low exposure risks of residents, sensitive and special groups such as children, adolescents, and fishermen may face more serious health risks than the average residents. Finally, knowledge gaps and recommendations for future research are discussed encouraging more long-term and systematic global monitoring, comprehensive studies of novel OPEs and OPEs metabolites, and more toxicological studies to completely evaluate the potential risks of OPEs.


Assuntos
Monitoramento Ambiental , Retardadores de Chama , Animais , Criança , Humanos , Adolescente , Ecossistema , Ésteres , Organofosfatos , Medição de Risco , China , Retardadores de Chama/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA