RESUMO
Osteoporosis is a serious public health problem and icariin (ICA) is the active component of the Epimedium sagittatum, a traditional Chinese medicinal herb. The present study aimed to investigate the effects and underlying mechanisms of ICA as a potential therapy for osteoporosis. Calvaria osteoblasts were isolated from newborn rats and treated with ICA. Cell viability, apoptosis, alkaline phosphatase activity and calcium deposition were analyzed. Bioinformatics analyses were performed to identify differentially expressed proteins (DEPs) in response to ICA treatment. Western blot analysis was performed to validate the expression of DEPs. ICA administration promoted osteoblast viability, alkaline phosphatase activity, calcium deposition and inhibited osteoblast apoptosis. Secretome analysis of ICAtreated cells was performed using twodimensional gel electrophoresis and matrixassisted laser desorption/ionization timeofflight mass spectrometry. A total of 56 DEPs were identified, including serpin family F member 1 (PEDF), protein disulfide isomerase family A, member 3 (PDIA3), nuclear protein, coactivator of histone transcription (NPAT), cMyc and heat shock protein 70 (HSP70). These proteins were associated with signaling pathways, including Fas and p53. Bioinformatics and western blot analyses confirmed that the expression levels of the six DEPs were upregulated following ICA treatment. These genes may be directly or indirectly involved in ICAmediated osteogenic differentiation and osteogenesis. It was demonstrated that ICA treatment promoted osteogenesis by modulating the expression of PEDF, PDIA3, NPAT and HSP70 through signaling pathways, including Fas and p53.