Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29263270

RESUMO

Members of the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3 [A3]) family of DNA cytidine deaminases are intrinsic restriction factors against retroviruses. In felids such as the domestic cat (Felis catus), the A3 genes encode the A3Z2, A3Z3, and A3Z2Z3 antiviral cytidine deaminases. Only A3Z3 and A3Z2Z3 inhibit viral infectivity factor (Vif)-deficient feline immunodeficiency virus (FIV). The FIV Vif protein interacts with Cullin (CUL), Elongin B (ELOB), and Elongin C (ELOC) to form an E3 ubiquitination complex to induce the degradation of feline A3s. However, the functional domains in FIV Vif for the interaction with Cullin are poorly understood. Here, we found that the expression of dominant negative CUL5 prevented the degradation of feline A3s by FIV Vif, while dominant negative CUL2 had no influence on the degradation of A3. In coimmunoprecipitation assays, FIV Vif bound to CUL5 but not CUL2. To identify the CUL5 interaction site in FIV Vif, the conserved amino acids from positions 47 to 160 of FIV Vif were mutated, but these mutations did not impair the binding of Vif to CUL5. By focusing on a potential zinc-binding motif (K175-C161-C184-C187) of FIV Vif, we found a conserved hydrophobic region (174IR175) that is important for the CUL5 interaction. Mutation of this region also impaired the FIV Vif-induced degradation of feline A3s. Based on a structural model of the FIV Vif-CUL5 interaction, the 52LW53 region in CUL5 was identified as mediating binding to FIV Vif. By comparing our results to the human immunodeficiency virus type 1 (HIV-1) Vif-CUL5 interaction surface (120IR121, a hydrophobic region that is localized in the zinc-binding motif), we suggest that the CUL5 interaction surface in the diverse HIV-1 and FIV Vifs is evolutionarily conserved, indicating a strong structural constraint. However, the FIV Vif-CUL5 interaction is zinc independent, which contrasts with the zinc dependence of HIV-1 Vif.IMPORTANCE Feline immunodeficiency virus (FIV), which is similar to human immunodeficiency virus type 1 (HIV-1), replicates in its natural host in T cells and macrophages that express the antiviral restriction factor APOBEC3 (A3). To escape A3s, FIV and HIV induce the degradation of these proteins by building a ubiquitin ligase complex using the viral protein Vif to connect to cellular proteins, including Cullin 5. Here, we identified the protein residues that regulate this interaction in FIV Vif and Cullin 5. While our structural model suggests that the diverse FIV and HIV-1 Vifs use conserved residues for Cullin 5 binding, FIV Vif binds Cullin 5 independently of zinc, in contrast to HIV-1 Vif.


Assuntos
Proteínas Culina , HIV-1 , Vírus da Imunodeficiência Felina , Mutação de Sentido Incorreto , Produtos do Gene vif do Vírus da Imunodeficiência Humana , Substituição de Aminoácidos , Animais , Gatos , Linhagem Celular , Proteínas Culina/química , Proteínas Culina/genética , Proteínas Culina/metabolismo , HIV-1/química , HIV-1/genética , HIV-1/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Vírus da Imunodeficiência Felina/química , Vírus da Imunodeficiência Felina/genética , Vírus da Imunodeficiência Felina/metabolismo , Ligação Proteica , Dedos de Zinco , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
2.
PLoS Pathog ; 13(12): e1006746, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29267382

RESUMO

APOBEC3s (A3s) are potent restriction factors of human immunodeficiency virus type 1/simian immunodeficiency viruses (HIV-1/SIV), and can repress cross-species transmissions of lentiviruses. HIV-1 originated from a zoonotic infection of SIV of chimpanzee (SIVcpz) to humans. However, the impact of human A3s on the replication of SIVcpz remains unclear. By using novel SIVcpz reporter viruses, we identified that human APOBEC3B (A3B) and APOBEC3H (A3H) haplotype II strongly reduced the infectivity of SIVcpz, because both of them are resistant to SIVcpz Vifs. We further demonstrated that human A3H inhibited SIVcpz by deaminase dependent as well independent mechanisms. In addition, other stably expressed human A3H haplotypes and splice variants showed strong antiviral activity against SIVcpz. Moreover, most SIV and HIV lineage Vif proteins could degrade chimpanzee A3H, but no Vifs from SIVcpz and SIV of gorilla (SIVgor) lineages antagonized human A3H haplotype II. Expression of human A3H hapII in human T cells efficiently blocked the spreading replication of SIVcpz. The spreading replication of SIVcpz was also restricted by stable A3H in human PBMCs. Thus, we speculate that stably expressed human A3H protects humans against the cross-species transmission of SIVcpz and that SIVcpz spillover to humans may have started in individuals that harbor haplotypes of unstable A3H proteins.


Assuntos
Aminoidrolases/metabolismo , Transmissão de Doença Infecciosa , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia , Zoonoses , Animais , Humanos , Pan troglodytes
3.
J Virol ; 90(23): 10545-10557, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27630243

RESUMO

Feline immunodeficiency virus (FIV) Vif protein counteracts feline APOBEC3s (FcaA3s) restriction factors by inducing their proteasomal degradation. The functional domains in FIV Vif for interaction with FcaA3s are poorly understood. Here, we have identified several motifs in FIV Vif that are important for selective degradation of different FcaA3s. Cats (Felis catus) express three types of A3s: single-domain A3Z2, single-domain A3Z3, and double-domain A3Z2Z3. We proposed that FIV Vif would selectively interact with the Z2 and the Z3 A3s. Indeed, we identified two N-terminal Vif motifs (12LF13 and 18GG19) that specifically interacted with the FcaA3Z2 protein but not with A3Z3. In contrast, the exclusive degradation of FcaA3Z3 was regulated by a region of three residues (M24, L25, and I27). Only a FIV Vif carrying a combination of mutations from both interaction sites lost the capacity to degrade and counteract FcaA3Z2Z3. However, alterations in the specific A3s interaction sites did not affect the cellular localization of the FIV Vif protein and binding to feline A3s. Pulldown experiments demonstrated that the A3 binding region localized to FIV Vif residues 50 to 80, outside the specific A3 interaction domain. Finally, we found that the Vif sites specific to individual A3s are conserved in several FIV lineages of domestic cat and nondomestic cats, while being absent in the FIV Vif of pumas. Our data support a complex model of multiple Vif-A3 interactions in which the specific region for selective A3 counteraction is discrete from a general A3 binding domain. IMPORTANCE: Both human immunodeficiency virus (HIV) and feline immunodeficiency virus (FIV) Vif proteins counteract their host's APOBEC3 restriction factors. However, these two Vif proteins have limited sequence homology. The molecular interaction between FIV Vif and feline APOBEC3s are not well understood. Here, we identified N-terminal FIV Vif sites that regulate the selective interaction of Vif with either feline APOBEC3Z2 or APOBEC3Z3. These specific Vif sites are conserved in several FIV lineages of domestic cat and nondomestic cats, while being absent in FIV Vif from puma. Our findings provide important insights for future experiments describing the FIV Vif interaction with feline APOBEC3s and also indicate that the conserved feline APOBEC3s interaction sites of FIV Vif allow FIV transmissions in Felidae.


Assuntos
Citidina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , Vírus da Imunodeficiência Felina/metabolismo , Sequência de Aminoácidos , Animais , Gatos/virologia , Linhagem Celular , Citidina Desaminase/química , Citidina Desaminase/genética , Produtos do Gene vif/química , Produtos do Gene vif/genética , Genes Virais , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Vírus da Imunodeficiência Felina/classificação , Vírus da Imunodeficiência Felina/genética , Leões/virologia , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
5.
J Virol ; 90(22): 10193-10208, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27581978

RESUMO

Lentiviruses have evolved the Vif protein to counteract APOBEC3 (A3) restriction factors by targeting them for proteasomal degradation. Previous studies have identified important residues in the interface of human immunodeficiency virus type 1 (HIV-1) Vif and human APOBEC3C (hA3C) or human APOBEC3F (hA3F). However, the interaction between primate A3C proteins and HIV-1 Vif or natural HIV-1 Vif variants is still poorly understood. Here, we report that HIV-1 Vif is inactive against A3Cs of rhesus macaques (rhA3C), sooty mangabey monkeys (smmA3C), and African green monkeys (agmA3C), while HIV-2, African green monkey simian immunodeficiency virus (SIVagm), and SIVmac Vif proteins efficiently mediate the depletion of all tested A3Cs. We identified that residues N/H130 and Q133 in rhA3C and smmA3C are determinants for this HIV-1 Vif-triggered counteraction. We also found that the HIV-1 Vif interaction sites in helix 4 of hA3C and hA3F differ. Vif alleles from diverse HIV-1 subtypes were tested for degradation activities related to hA3C. The subtype F-1 Vif was identified to be inactive for degradation of hA3C and hA3F. The residues that determined F-1 Vif inactivity in the degradation of A3C/A3F were located in the C-terminal region (K167 and D182). Structural analysis of F-1 Vif revealed that impairing the internal salt bridge of E171-K167 restored reduction capacities to A3C/A3F. Furthermore, we found that D101 could also form an internal interaction with K167. Replacing D101 with glycine and R167 with lysine in NL4-3 Vif impaired its counteractivity to A3F and A3C. This finding indicates that internal interactions outside the A3 binding region in HIV-1 Vif influence the capacity to induce degradation of A3C/A3F. IMPORTANCE: The APOBEC3 restriction factors can serve as potential barriers to lentiviral cross-species transmissions. Vif proteins from lentiviruses counteract APOBEC3 by proteasomal degradation. In this study, we found that monkey-derived A3C, rhA3C and smmA3C, were resistant to HIV-1 Vif. This was determined by A3C residues N/H130 and Q133. However, HIV-2, SIVagm, and SIVmac Vif proteins were found to be able to mediate the depletion of all tested primate A3C proteins. In addition, we identified a natural HIV-1 Vif (F-1 Vif) that was inactive in the degradation of hA3C/hA3F. Here, we provide for the first time a model that explains how an internal salt bridge of E171-K167-D101 influences Vif-mediated degradation of hA3C/hA3F. This finding provides a novel way to develop HIV-1 inhibitors by targeting the internal interactions of the Vif protein.


Assuntos
Citidina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , HIV-1/metabolismo , Vírus da Imunodeficiência Símia/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Células HEK293 , Infecções por HIV/virologia , HIV-2/metabolismo , Humanos , Lentivirus/metabolismo , Macaca mulatta , Ligação Proteica/fisiologia
6.
Retrovirology ; 13(1): 46, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27368163

RESUMO

BACKGROUND: Feline immunodeficiency virus (FIV) is a global pathogen of Felidae species and a model system for Human immunodeficiency virus (HIV)-induced AIDS. In felids such as the domestic cat (Felis catus), APOBEC3 (A3) genes encode for single-domain A3Z2s, A3Z3 and double-domain A3Z2Z3 anti-viral cytidine deaminases. The feline A3Z2Z3 is expressed following read-through transcription and alternative splicing, introducing a previously untranslated exon in frame, encoding a domain insertion called linker. Only A3Z3 and A3Z2Z3 inhibit Vif-deficient FIV. Feline A3s also are restriction factors for HIV and Simian immunodeficiency viruses (SIV). Surprisingly, HIV-2/SIV Vifs can counteract feline A3Z2Z3. RESULTS: To identify residues in feline A3s that Vifs need for interaction and degradation, chimeric human-feline A3s were tested. Here we describe the molecular direct interaction of feline A3s with Vif proteins from cat FIV and present the first structural A3 model locating these interaction regions. In the Z3 domain we have identified residues involved in binding of FIV Vif, and their mutation blocked Vif-induced A3Z3 degradation. We further identified additional essential residues for FIV Vif interaction in the A3Z2 domain, allowing the generation of FIV Vif resistant A3Z2Z3. Mutated feline A3s also showed resistance to the Vif of a lion-specific FIV, indicating an evolutionary conserved Vif-A3 binding. Comparative modelling of feline A3Z2Z3 suggests that the residues interacting with FIV Vif have, unlike Vif-interacting residues in human A3s, a unique location at the domain interface of Z2 and Z3 and that the linker forms a homeobox-like domain protruding of the Z2Z3 core. HIV-2/SIV Vifs efficiently degrade feline A3Z2Z3 by possible targeting the linker stretch connecting both Z-domains. CONCLUSIONS: Here we identified in feline A3s residues important for binding of FIV Vif and a unique protein domain insertion (linker). To understand Vif evolution, a structural model of the feline A3 was developed. Our results show that HIV Vif binds human A3s differently than FIV Vif feline A3s. The linker insertion is suggested to form a homeo-box domain, which is unique to A3s of cats and related species, and not found in human and mouse A3s. Together, these findings indicate a specific and different A3 evolution in cats and human.


Assuntos
Citidina Desaminase/química , Citidina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , HIV-1/metabolismo , Vírus da Imunodeficiência Felina/metabolismo , Animais , Gatos , Linhagem Celular , Citidina Desaminase/genética , Evolução Molecular , Produtos do Gene vif/genética , Genes Homeobox , HIV-1/genética , Humanos , Vírus da Imunodeficiência Felina/genética , Modelos Moleculares , Proteínas Recombinantes de Fusão/metabolismo
7.
J Virol ; 88(2): 1259-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24227834

RESUMO

Human tetherin is a host restriction factor that inhibits replication of enveloped viruses by blocking viral release. Tetherin has an unusual topology that includes an N-terminal cytoplasmic tail, a single transmembrane domain, an extracellular domain, and a C-terminal glycosylphosphatidylinositol anchor. Tetherin is not well conserved across species, so it inhibits viral replication in a species-specific manner. Thus, studies of tetherin activities from different species provide an important tool for understanding its antiviral mechanism. Here, we report cloning of equine tetherin and characterization of its antiviral activity. Equine tetherin shares 53%, 40%, 36%, and 34% amino acid sequence identity with feline, human, simian, and murine tetherins, respectively. Like the feline tetherin, equine tetherin has a shorter N-terminal domain than human tetherin. Equine tetherin is localized on the cell surface and strongly blocks human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and equine infectious anemia virus (EIAV) release from virus-producing cells. The antiviral activity of equine tetherin is neutralized by EIAV envelope protein, but not by the HIV-1 accessory protein Vpu, which is a human tetherin antagonist, and EIAV envelope protein does not counteract human tetherin. These results shed new light on our understanding of the species-specific tetherin antiviral mechanism.


Assuntos
Antígenos CD/metabolismo , Anemia Infecciosa Equina/metabolismo , Vírus da Anemia Infecciosa Equina/fisiologia , Proteínas do Envelope Viral/metabolismo , Liberação de Vírus , Sequência de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/genética , Sequência de Bases , Gatos , Linhagem Celular , Clonagem Molecular , Anemia Infecciosa Equina/genética , Anemia Infecciosa Equina/virologia , Cavalos , Humanos , Vírus da Anemia Infecciosa Equina/genética , Camundongos , Dados de Sequência Molecular , Retroviridae/genética , Retroviridae/fisiologia , Alinhamento de Sequência , Proteínas do Envelope Viral/genética
8.
Virol J ; 11: 151, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25158826

RESUMO

BACKGROUND: Tetherin is an interferon-inducible host cell factor that blocks the viral particle release of the enveloped viruses. Most knowledge regarding the interaction between tetherin and viruses has been obtained using the primate lentiviral system. However, much less is known about the functional roles of tetherin on other lentiviruses. Equine infectious anemia virus (EIAV) is an important macrophage-tropic lentivirus that has been widely used as a practical model for investigating the evolution of the host-virus relationship. The host range of EIAV is reported to include all members of the Equidae family. However, EIAV has different clinical responses in horse and donkey. It's intriguing to investigate the similarities and differences between the tetherin orthologues encoded by horse and donkey. RESULTS: We report here that there are two equine tetherin orthologues. Compared to horse tetherin, there are three valine amino acid deletions within the transmembrane domain and three distinct mutations within the ectodomain of donkey tetherin. However, the antiviral activity of donkey tetherin was not affected by amino acid deletion or substitution. In addition, both tetherin orthologues encoded by horse and donkey are similarly sensitive to EIAV Env protein, and equally activate NF-κB signaling. CONCLUSION: Our data suggest that both tetherin orthologues encoded by horse and donkey showed similar antiviral activities and abilities to induce NF-κB signaling. In addition, the phenomenon about the differential responses of horses and donkeys to infection with EIAV was not related with the differences in the structure of the corresponding tetherin orthologues.


Assuntos
Antígenos CD/farmacologia , Antivirais/farmacologia , Equidae/metabolismo , Vírus da Anemia Infecciosa Equina/efeitos dos fármacos , Glicoproteínas de Membrana/farmacologia , Sequência de Aminoácidos , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Células Cultivadas , Clonagem Molecular , Equidae/genética , Regulação da Expressão Gênica , Humanos , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Isoformas de Proteínas , Transdução de Sinais , Linfócitos T/metabolismo
9.
J Mol Biol ; 434(6): 167421, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34954236

RESUMO

Human SERINC5 (SER5) protein is a recently described restriction factor against human immunodeficiency virus-1 (HIV-1), which is antagonized by HIV-1 Nef protein. Other retroviral accessory proteins such as the glycosylated Gag (glycoGag) from the murine leukemia virus (MLV) can also antagonize SER5. In addition, some viruses escape SER5 restriction by expressing a SER5-insensitive envelope (Env) glycoprotein. Here, we studied the activity of human and feline SER5 on HIV-1 and on the two pathogenic retroviruses in cats, feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV). HIV-1 in absence of Nef is restricted by SER5 from domestic cats and protected by its Nef protein. The sensitivity of feline retroviruses FIV and FeLV to human and feline SER5 is considerably different: FIV is sensitive to feline and human SER5 and lacks an obvious mechanism to counteract SER5 activity, while FeLV is relatively resistant to SER5 inhibition. We speculated that similar to MLV, FeLV-A or FeLV-B express glycoGag proteins and investigated their function against human and feline SER5 in wild type and envelope deficient virus variants. We found that the endogenous FeLV recombinant virus, FeLV-B but not wild type exogenous FeLV-A envelope mediates a strong resistance against human and feline SER5. GlycoGag has an additional but moderate role to enhance viral infectivity in the presence of SER5 that seems to be dependent on the FeLV envelope. These findings may explain, why in vivo FeLV-B has a selective advantage and causes higher FeLV levels in infected cats compared to infections of FeLV-A only.


Assuntos
HIV-1 , Vírus da Imunodeficiência Felina , Vírus da Leucemia Felina , Proteínas de Membrana , Proteínas do Envelope Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Animais , Gatos , Glicosilação , HIV-1/fisiologia , Humanos , Vírus da Imunodeficiência Felina/fisiologia , Vírus da Leucemia Felina/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Envelope Viral/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/fisiologia
10.
Virology ; 554: 17-27, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33333348

RESUMO

The family of human APOBEC3 (A3) restriction factors is formed by seven different proteins, A3A-D and A3F-H. Among these A3s, A3B harbors strong restriction activity against several retroviruses, such as SIV, and MLV. How lentiviruses and other retroviruses, prevalent in many primate species, counteract A3B is poorly understood. In this study, we found that A3B strongly inhibited SIVmac and HIV-2 infectivity, which was antagonized by their Vif proteins. Both SIVmac and HIV-2 Vifs diminished the protein level of A3B in viral producer cells, and hindered A3B incorporation into viral particles. We observed that HIV-2 Vif binds A3B and induces its degradation by assembly of an A3-Vif-CUL5-ElonginB/C E3-ligase complex. A3B and HIV-2 Vif localize and interact in the nucleus. In addition, we also found that the accessory protein Bet of prototype foamy virus (PFV) significantly antagonized the anti-SIVmac activity of A3B. Like Vif, Bet prevented the incorporation of A3B into viral particles. However, in contrast to Vif Bet did not induce the degradation of A3B. Rather, Bet binds A3B to block formation of high molecular weight A3B complexes and induces A3B cytoplasmic trapping. In summary, these findings indicate that A3B is recognized by diverse retroviruses and counteracted by virus-specific pathways that could be targeted to inhibit A3B mutating activity in cancers.


Assuntos
Citidina Desaminase/antagonistas & inibidores , Citidina Desaminase/metabolismo , HIV-2/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas dos Retroviridae/metabolismo , Spumavirus/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Elonguina/genética , Elonguina/metabolismo , Produtos do Gene vif/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Vírus da Imunodeficiência Símia/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Vírion/metabolismo
11.
Viruses ; 10(4)2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642583

RESUMO

The replication of lentiviruses highly depends on host cellular factors, which defines their species-specific tropism. Cellular restriction factors that can inhibit lentiviral replication were recently identified. Feline immunodeficiency virus (FIV) was found to be sensitive to several feline cellular restriction factors, such as apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) and tetherin, but FIV evolved to counteract them. Here, we describe the molecular mechanisms by which feline APOBEC3 restriction factors inhibit FIV replication and discuss the molecular interaction of APOBEC3 proteins with the viral antagonizing protein Vif. We speculate that feline APOBEC3 proteins could explain some of the observed FIV cross-species transmissions described in wild Felids.


Assuntos
Desaminases APOBEC/metabolismo , Doenças do Gato/transmissão , Vírus da Imunodeficiência Felina/fisiologia , Infecções por Lentivirus/veterinária , Desaminases APOBEC/genética , Animais , Doenças do Gato/virologia , Gatos , Produtos do Gene vif/deficiência , Produtos do Gene vif/metabolismo , Infecções por Lentivirus/transmissão , Infecções por Lentivirus/virologia , Modelos Biológicos , Especificidade da Espécie , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA