Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Periodontal Res ; 57(3): 594-614, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35388494

RESUMO

BACKGROUND AND OBJECTIVE: Periodontitis is a multifactorial chronic inflammatory disease that can lead to the irreversible destruction of dental support tissues. As an epigenetic factor, the expression of circRNA is tissue-dependent and disease-dependent. This study aimed to identify novel periodontitis-associated circRNAs and predict relevant circRNA-periodontitis regulatory network by using recently developed bioinformatic tools and integrating sequencing profiling with clinical information for getting a better and more thorough image of periodontitis pathogenesis, from gene to clinic. MATERIAL AND METHODS: High-throughput sequencing and RT-qPCR were conducted to identify differentially expressed circRNAs in gingival tissues from periodontitis patients. The relationship between upregulated circRNAs expression and probing depth (PD) was performed using Spearman's correlation analysis. Bioinformatic analyses including GO analysis, circRNA-disease association prediction, and circRNA-miRNA-mRNA network prediction were performed to clarify potential regulatory functions of identified circRNAs in periodontitis. A receiver-operating characteristic (ROC) curve was established to assess the diagnostic significance of identified circRNAs. RESULTS: High-throughput sequencing identified 70 differentially expressed circRNAs (68 upregulated and 2 downregulated circRNAs) in human periodontitis (fold change >2.0 and p < .05). The top five upregulated circRNAs were validated by RT-qPCR that had strong associations with multiple human diseases, including periodontitis. The upregulation of circRNAs were positively correlated with PD (R = .40-.69, p < .05, moderate). A circRNA-miRNA-mRNA network with the top five upregulated circRNAs, differentially expressed mRNAs, and overlapped predicted miRNAs indicated potential roles of circRNAs in immune response, cell apoptosis, migration, adhesion, and reaction to oxidative stress. The ROC curve showed that circRNAs had potential value in periodontitis diagnosis (AUC = 0.7321-0.8667, p < .05). CONCLUSION: CircRNA-disease associations were predicted by online bioinformatic tools. Positive correlation between upregulated circRNAs, circPTP4A2, chr22:23101560-23135351+, circARHGEF28, circBARD1 and circRASA2, and PD suggested function of circRNAs in periodontitis. Network prediction further focused on downstream targets regulated by circRNAs during periodontitis pathogenesis.


Assuntos
MicroRNAs , Periodontite , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Humanos , MicroRNAs/genética , Periodontite/genética , RNA Circular/genética , RNA Mensageiro/genética
2.
Nat Commun ; 15(1): 1957, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438348

RESUMO

Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides an aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Síntese de DNA Translesão , Reparo de Erro de Pareamento de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Temozolomida/farmacologia , Proteínas de Ligação a DNA , Ubiquitina-Proteína Ligases/genética
3.
Cancer Med ; 12(2): 2075-2088, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35789544

RESUMO

BACKGROUND: Microsatellite instability-high (MSI-H) subgroup of gastric cancer (GC) is characterized by a high tumor mutational burden, increased lymphocytic infiltration, and enhanced inflammatory cytokines. GC patients with MSI-H status have a good response to immune checkpoint blockade management. However, heterogeneity within the subtype and the underlying mechanisms of shaping tumor microenvironments remain poorly understood. METHODS: RNA expression levels and clinical parameters of GC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The data were analyzed using single-sample Gene Set Enrichment Analysis (ssGSEA), univariate Cox regression, multivariate Cox regression, and Least Absolute Shrinkage Selection Operator (LASSO) regression. In addition, multiplex immunohistochemistry (mIHC) was used in our clinical cohort for the tumor microenvironment study. RESULTS: By ssGSEA and survival analysis, the EMT signaling pathway was identified as a representative pathway, which can stratify the patients with MSI-H GC with significant survival predictive power. Then, a novel representative EMT-related five-gene signature (namely CALU, PCOLCE2, PLOD2, SGCD, and THBS2) was established from EMT signaling gene set, which sensitivity and specificity were further validated in the independent GEO database (GSE62254) cohort for disease outcome prediction. Based on public single-cell data and in situ immunohistochemistry, we found that most of these five genes were abundantly expressed in cancer-associated fibroblasts. Furthermore, patients with high or low risk divided by this five-gene signature exhibited a strong correlation of the distinct patterns of tumor immune microenvironment. By mIHC staining of sections from 30 patients with MSI-H status, we showed that the patients with better prognoses had the increased infiltration of CD8+ cells in the primary tumoral tissue. CONCLUSION: Our study developed a simple five-gene signature for stratifying MSI-H GC patients with survival predictive power.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Instabilidade de Microssatélites , Genes Reguladores , Linfócitos T CD8-Positivos , Prognóstico , Microambiente Tumoral/genética
4.
Sci Signal ; 16(809): eadf8299, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906629

RESUMO

Mechanical cues sensed by integrins induce cells to produce proteases to remodel the extracellular matrix. Excessive protease production occurs in many degenerative diseases, including osteoarthritis, in which articular cartilage degradation is associated with the genesis of matrix protein fragments that can activate integrins. We investigated the mechanisms by which integrin signals may promote protease production in response to matrix changes in osteoarthritis. Using a fragment of the matrix protein fibronectin (FN) to activate the α5ß1 integrin in primary human chondrocytes, we found that endocytosis of the integrin and FN fragment complex drove the production of the matrix metalloproteinase MMP-13. Activation of α5ß1 by the FN fragment, but not by intact FN, was accompanied by reactive oxygen species (ROS) production initially at the cell surface, then in early endosomes. These ROS-producing endosomes (called redoxosomes) contained the integrin-FN fragment complex, the ROS-producing enzyme NADPH oxidase 2 (NOX2), and SRC, a redox-regulated kinase that promotes MMP-13 production. In contrast, intact FN was endocytosed and trafficked to recycling endosomes without inducing ROS production. Articular cartilage from patients with osteoarthritis showed increased amounts of SRC and the NOX2 complex component p67phox. Furthermore, we observed enhanced localization of SRC and p67phox at early endosomes, suggesting that redoxosomes could transmit and sustain integrin signaling in response to matrix damage. This signaling mechanism not only amplifies the production of matrix-degrading proteases but also establishes a self-perpetuating cycle that contributes to the ongoing degradation of cartilage matrix in osteoarthritis.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Condrócitos , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Integrina alfa5beta1/genética , Integrina alfa5beta1/metabolismo , Integrinas/genética , Integrinas/metabolismo , Cartilagem Articular/metabolismo , Oxirredução , Endossomos/metabolismo
5.
Res Sq ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37886584

RESUMO

Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides a new aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define novel molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.

6.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37905107

RESUMO

Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides a new aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define novel molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.

7.
Cell Death Dis ; 13(7): 577, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778385

RESUMO

The activity of integrin-linked kinase (ILK) in cancerous cells is often oncogenic and associated with malignant properties, such as uncontrolled cell cycle progression and evasion from senescence. However, the role of ILK in cellular senescence in gastric cancer (GC) has not been previously examined. We generated single-cell clones of ILK knock-out using CRISPR-Cas9 in human GC lines with mesenchymal or epithelial histology. Cells with no residual ILK expression exhibited strong cellular senescence with diminished clathrin-mediated endocytosis, Surprisingly, ILK loss-induced cellular senescence appeared to be independent of its function in integrin signaling. The low dose of CPD22, a small molecule inhibitor of ILK activity-induced senescence in three GC cell lines with different histologies. Furthermore, senescent cells with ILK depletion transfected with N-terminal truncated ILK mutant remaining catalytic domains displayed the reduction of senescent phenotypes. RNA sequencing and cytokine array results revealed the enrichment of multiple pro-inflammatory signaling pathways in GC lines in the absence of ILK. Our study identified the important role and the potential mechanism of ILK in the cellular senescence of cancerous epithelial cells. The inhibition of ILK activity using small molecule compounds could have a pro-senescent effect as a therapeutic option for GC.


Assuntos
Neoplasias Gástricas , Senescência Celular , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Neoplasias Gástricas/genética
8.
Oncogene ; 41(1): 26-36, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667277

RESUMO

The EMT (epithelial-to-mesenchymal-transition) subtype of gastric cancer (GC) is associated with poor treatment responses and unfavorable clinical outcomes. Despite the broad physiological roles of the micro-RNA (miR)-200 family, they largely serve to maintain the overall epithelial phenotype. However, during late-stage gastric tumorigenesis, members of the miR-200 family are markedly suppressed, resulting in the transition to the mesenchymal state and the acquisition of invasive properties. As such, the miR-200 family represents a robust molecular marker of EMT, and subsequently, disease severity and prognosis. Most reports have studied the effect of single miR-200 family member knockdown. Here, we employ a multiplex CRISPR/Cas9 system to generate a complete miR-200 family knockout (FKO) to investigate their collective and summative role in regulating key cellular processes during GC pathogenesis. Genetic deletion of all miR-200s in the human GC cell lines induced potent morphological alterations, G1/S cell cycle arrest, increased senescence-associated ß-galactosidase (SA-ß-Gal) activity, and aberrant metabolism, collectively resembling the senescent phenotype. Coupling RNA-seq data with publicly available datasets, we revealed a clear separation of senescent and non-senescent states amongst FKO cells and control cells, respectively. Further analysis identified key senescence-associated secretory phenotype (SASP) components in FKO cells and a positive feedback loop for maintenance of the senescent state controlled by activation of TGF-ß and TNF-α pathways. Finally, we showed that miR-200 FKO associated senescence in cancer epithelial cells significantly recruited stromal cells in the tumor microenvironment. Our work has identified a new role of miR-200 family members which function as an integrated unit serving to link senescence with EMT, two major conserved biological processes.


Assuntos
Senescência Celular/imunologia , Transição Epitelial-Mesenquimal/imunologia , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Prognóstico , Neoplasias Gástricas/patologia , Microambiente Tumoral
9.
Nat Commun ; 13(1): 5413, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109526

RESUMO

Anti-cancer immunity and response to immune therapy is influenced by the metabolic states of the tumours. Immune checkpoint blockade therapy (ICB) is known to involve metabolic adaptation, however, the mechanism is not fully known. Here we show, by metabolic profiling of plasma samples from melanoma-bearing mice undergoing anti-PD1 and anti-CTLA4 combination therapy, that higher levels of purine metabolites, including inosine, mark ICB sensitivity. Metabolic profiles of ICB-treated human cancers confirm the association between inosine levels and ICB sensitivity. In mouse models, inosine supplementation sensitizes tumours to ICB, even if they are intrinsically ICB resistant, by enhancing T cell-mediated cytotoxicity and hence generating an immunologically hotter microenvironment. We find that inosine directly inhibits UBA6 in tumour cells, and lower level of UBA6 makes the tumour more immunogenic and this is reflected in favourable outcome following ICB therapy in human melanomas. Transplanted mouse melanoma and breast cancer cells with genetic ablation of Uba6 show higher sensitivity to ICB than wild type tumours. Thus, we provide evidence of an inosine-regulated UBA6-dependent pathway governing tumour-intrinsic immunogenicity and hence sensitivity to immune checkpoint inhibition, which might provide targets to overcome ICB resistance.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Animais , Terapia Combinada , Humanos , Inosina/farmacologia , Melanoma/patologia , Camundongos , Radioimunoterapia , Microambiente Tumoral , Enzimas Ativadoras de Ubiquitina
10.
Oncogene ; 40(48): 6549-6565, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663880

RESUMO

Mutagenesis is a key hallmark and enabling characteristic of cancer cells, yet the diverse underlying mutagenic mechanisms that shape cancer genomes are not understood. This review will consider the emerging challenge of determining how DNA damage response pathways-both tolerance and repair-act upon specific forms of DNA damage to generate mutations characteristic of tumors. DNA polymerases are typically the ultimate mutagenic effectors of DNA repair pathways. Therefore, understanding the contributions of DNA polymerases is critical to develop a more comprehensive picture of mutagenic mechanisms in tumors. Selection of an appropriate DNA polymerase-whether error-free or error-prone-for a particular DNA template is critical to the maintenance of genome stability. We review different modes of DNA polymerase dysregulation including mutation, polymorphism, and over-expression of the polymerases themselves or their associated activators. Based upon recent findings connecting DNA polymerases with specific mechanisms of mutagenesis, we propose that compensation for DNA repair defects by error-prone polymerases may be a general paradigm molding the mutational landscape of cancer cells. Notably, we demonstrate that correlation of error-prone polymerase expression with mutation burden in a subset of patient tumors from The Cancer Genome Atlas can identify mechanistic hypotheses for further testing. We contrast experimental approaches from broad, genome-wide strategies to approaches with a narrower focus on a few hundred base pairs of DNA. In addition, we consider recent developments in computational annotation of patient tumor data to identify patterns of mutagenesis. Finally, we discuss the innovations and future experiments that will develop a more comprehensive portrait of mutagenic mechanisms in human tumors.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Genoma Humano , Instabilidade Genômica , Mutação , Neoplasias/patologia , DNA Polimerase Dirigida por DNA/genética , Humanos , Neoplasias/genética
11.
NAR Cancer ; 3(1): zcaa037, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33447826

RESUMO

The E3 ubiquitin ligase Rad18 promotes a damage-tolerant and error-prone mode of DNA replication termed trans-lesion synthesis that is pathologically activated in cancer. However, the impact of vertebrate Rad18 on cancer genomes is not known. To determine how Rad18 affects mutagenesis in vivo, we have developed and implemented a novel computational pipeline to analyze genomes of carcinogen (7, 12-Dimethylbenz[a]anthracene, DMBA)-induced skin tumors from Rad18+/+ and Rad18- / - mice. We show that Rad18 mediates specific mutational signatures characterized by high levels of A(T)>T(A) single nucleotide variations (SNVs). In Rad18- /- tumors, an alternative mutation pattern arises, which is characterized by increased numbers of deletions >4 bp. Comparison with annotated human mutational signatures shows that COSMIC signature 22 predominates in Rad18+/+ tumors whereas Rad18- / - tumors are characterized by increased contribution of COSMIC signature 3 (a hallmark of BRCA-mutant tumors). Analysis of The Cancer Genome Atlas shows that RAD18 expression is strongly associated with high SNV burdens, suggesting RAD18 also promotes mutagenesis in human cancers. Taken together, our results show Rad18 promotes mutagenesis in vivo, modulates DNA repair pathway choice in neoplastic cells, and mediates specific mutational signatures that are present in human tumors.

12.
Adv Ther ; 25(5): 422-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18484199

RESUMO

INTRODUCTION: The purpose of this study was to evaluate the long-term effects of chitosan 0.1% and sodium hyaluronate 1.4% (Healon GV(R); Advanced Medical Optics, Santa Ana, CA, USA) on intraocular pressure (IOP) and endothelial cell loss. METHODS: This randomised study comprised 140 eyes of 140 patients with age-related cataracts undergoing phacoemulsification followed by posterior chamber intraocular lens (IOL) implantation; 70 received chitosan 0.1%, and 70 received sodium hyaluronate 1.4%. The IOP was measured with standard Goldman applanation tonometry pre-operatively and 1 day, 1 week, 1 month, 3 months, 1 year and 3 years postoperatively. Endothelial cell counts were performed pre-operatively and 1 week, 1 month, 3 months, 1 year and 3 years postoperatively using a Pro/Koester WFSCM contact endothelial microscope. RESULTS: There were no significant differences found in postoperative IOP levels among the chitosan and sodium hyaluronate groups (P>0.05). No significant differences were found in postoperative mean endothelial cell counts at all time points between the chitosan and sodium hyaluronate groups (P>0.05). CONCLUSION: Chitosan has the same effects as sodium hyaluronate on IOP and endothelium cells counts after cataract surgery and IOL implantation, and therefore may be an alternative ophthalmic viscoelastic device.


Assuntos
Quitosana/farmacologia , Endotélio Corneano/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Pressão Intraocular/efeitos dos fármacos , Facoemulsificação , Substâncias Viscoelásticas/farmacologia , Idoso , Idoso de 80 Anos ou mais , Contagem de Células , Quitosana/administração & dosagem , Método Duplo-Cego , Endotélio Corneano/patologia , Feminino , Humanos , Ácido Hialurônico/administração & dosagem , Implante de Lente Intraocular , Masculino , Pessoa de Meia-Idade , Tonometria Ocular , Substâncias Viscoelásticas/administração & dosagem
13.
Int J Biol Macromol ; 96: 569-577, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28017764

RESUMO

Recently, photocrosslinked hydrogels have attracted more and more attention in biomedical applications. In this study, a serials of injectable hydrogels were fabricated from aldehyde methacrylate sodium alginate and amino gelatin (AMSA/AG) using a two-step process. Here, sodium alginate, a kind of natural polysaccharide, was modified by oxidizer to form aldehyde sodium alginate (ASA), and methacrylate groups were further grafted on the main chain of ASA. Gelatin, the denatured form of collagen, was modified with ethylenediamine (ED) to graft more amino groups. When AMSA and AG aqueous solutions were mixed, the Schiff base reaction occurred quickly to form the primary network between aldehyde groups in AMSA and amino groups in AG, and then a 365nm ultraviolet (UV) light was used to initiate the radical reaction of methacrylate groups in AMSA to produce the secondary network. The structures and properties of AMSA/AG hydrogels were evaluated by Fourier Transforms Infrared spectroscopy (FTIR) and 1HNMR analysis. The swelling ratio confirmed the density of crosslinked networks, and the mechanical performance demonstrated that the UV initiated the double crosslinking network hydrogels have an improved mechanical properties compared to the single Schiff base networks hydrogels. The results showed that the photocrosslinked double network hydrogels have enhanced mechanical properties, good biocompatibility and controllable degradation rate. So, this hydrogels may have great potential utilized in regenerative medicine as therapeutic materials.


Assuntos
Alginatos/química , Gelatina/química , Hidrogéis/química , Hidrogéis/farmacologia , Processos Fotoquímicos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Injeções , Camundongos , Oligopeptídeos/química , Reologia
14.
Artif Cells Nanomed Biotechnol ; 45(1): 76-83, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26855181

RESUMO

Soft tissue adhesives made from natural hydrogel are attractive in clinical applications due to their excellent properties, such as high water content, good biocompatibility, low immune, good biodegradability. Hydrogels derived from natural polysaccharides and proteins are ideal components for soft tissue adhesive since they resemble the extracellular matrices of the tissue composed of various sugar and amino acids-based macromolecules. In this paper, a series of novel tissue adhesives mixed by aldehyde sodium alginate (ASA) with amino gelatin (AG) were developed and characterized. The effect of aldehyde content in ASA and amino group content in AG on the properties of ASA/AG cross-linked hydrogel was measured. The results showed the gelling time, swelling behavior and the bonding strength of the hydrogel can be tuned by varying the content of aldehyde groups in ASA and the content of amino groups in AG. The gelation time could be controlled within 4-18 min. When the aldehyde content of ASA is 75.24% and the amino content of AG is 0.61 mmol/g, the hydrogel almost has the adhesive strength equal to the commercially available adhesive fibrin glue. So, this tunable ASA/AG hydrogels in this study could be a promising candidate as soft tissue adhesive and have a wide range of biomedical applications.


Assuntos
Alginatos , Hidrogéis , Teste de Materiais , Adesivos Teciduais , Alginatos/química , Alginatos/farmacologia , Animais , Linhagem Celular , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia
15.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 30(11): 1437-1440, 2016 Nov 08.
Artigo em Zh | MEDLINE | ID: mdl-29786404

RESUMO

OBJECTIVE: To review the recent research progress of acellular fish skin as a tissue engineered scaffold, and to analyze the feasibility and risk management in clinical application. METHODS: The research and development, application status of acellular fish skin as a tissue engineered scaffold were comprehensively analyzed, and then several key points were put forward. RESULTS: Acellular fish skin has a huge potential in clinical practice as novel acellular extracellular matrix, but there have been no related research reports up to now in China. As an emerging point of translational medicine, investigation of acellular fish skin is mainly focused on artificial skin, surgical patch, and wound dressings. CONCLUSIONS: Development of acellular fish skin-based new products is concerned to be clinical feasible and necessary, but a lot of applied basic researches should be carried out.

16.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 22(4): 745-8, 2005 Aug.
Artigo em Zh | MEDLINE | ID: mdl-16156264

RESUMO

Water-soluble carboxymethyl chitosan was prepared from dried shrimp shells. The intrinsic viscosities of its samples were measured to evaluate the stability of carboxymethyl chitosan. The influential factors of stability, such as heat, pH, ionic strength, ultraviolet radiation, and sterilization were studied. The results demonstrate that the intrinsic viscosities of water-soluble chitosan will be influenced, to a certain extent, by the change of pH and ionic strength. Ultraviolet radiation and sterilized processes not only exept influence on the degradation of chitosan, but also have prominent effects on the molecular structure of it. Besides, temperature will also affect the speed of degradation, and chitosan can be stored at a temperature as low as 2 degrees C-8 degrees C.


Assuntos
Quitosana/química , Quitosana/síntese química , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Solubilidade , Temperatura
17.
Artigo em Zh | MEDLINE | ID: mdl-26477168

RESUMO

OBJECTIVE: To summarize the current research status of alginate derivatives based on biomedical materials, and analyze several key points as novel clinical products. METHODS: The general preparation and application methods of alginate derivatives based on biomedical materials at home and abroad were reviewed. The present status and problems were analyzed. RESULTS: The derivation methods to prepare alginate derivatives include crosslink, sulfation, biological factors derivatization, hydrophobic modification, and graft copolymerization. With excellent bionic performance of structure and properties, many alginate derivatives are available for tissue engineering scaffolds, artificial organs, and drug delivery systems etc. However, more systematic applied basic research data should be collected and statistically analyzed for risk managements. CONCLUSION: Alginate derivatives have good feasibility as novel medical products, meanwhile, systematic evaluation and verification should be executed for their safety, effectiveness, and suitability.


Assuntos
Alginatos , Materiais Biocompatíveis , Engenharia Tecidual/métodos , Alicerces Teciduais , Regeneração Óssea , Osso e Ossos/metabolismo , Osso e Ossos/fisiopatologia , Sistemas de Liberação de Medicamentos , Humanos
18.
Int J Clin Exp Pathol ; 8(6): 6636-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26261545

RESUMO

Calcium alginate has been proved to favor the skin ulcer healing and collagen synthesis was a critical factor for the wound closure. The present study was to elucidate the mechanism of calcium alginate on the diabetes skin ulceration. Calcium alginate dressing was applied daily on the full-thickness exercising wound created on the back of diabetic rat model as Alg-group (n=6), and the vaseline dressing was used as control (n=6). Rats were respectively sacrificed and the wound tissues were removed and used for the evaluation of various biochemical analysis contained collagen (type I and III) by Western blotting and hydroxyproline level changes by ELISA assay at 3 d, 7 d and 14 d after wounding. The expression of skin collagen I in Alg-group was enhanced from day 3 (0.66 ± 0.25 vs. 0.42 ± 0.09, P<0.05) to day 14 (1.09 ± 0.14 vs. 0.78 ± 0.16, P<0.05). However, no significant difference of collagen III expression was found between two groups during wound healing (P>0.05). And the ratio of collagen I/III in Alg-group was greater than that of Vas-group at day 7 (1.07 ± 0.31 vs. 0.77 ± 0.11, P<0.05) and 14 (1.18 ± 0.30 vs. 0.83 ± 0.14, P<0.05). The hydroxyproline level in skin homogenate of Alg-group was higher than that of Vas-group from day 3 (30.29 ± 0.92 ng/ml vs. 27.52 ± 0.83 ng/ml, P<0.05) to day 14 (89.58 ± 4.97 ng/ml vs. 79.30 ± 4.42 ng/ml, P<0.05). Calcium alginate accelerates the process of wound healing through improving type I collagen synthesis and increasing ratio of collagen I/III in diabetic rats.


Assuntos
Alginatos/farmacologia , Colágeno Tipo III/metabolismo , Colágeno Tipo I/metabolismo , Diabetes Mellitus Experimental/complicações , Úlcera Cutânea/tratamento farmacológico , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Hidroxiprolina/metabolismo , Masculino , Ratos Sprague-Dawley , Pele/metabolismo , Pele/patologia , Úlcera Cutânea/etiologia , Úlcera Cutânea/metabolismo , Úlcera Cutânea/patologia , Fatores de Tempo
19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 21(3): 350-4, 2004 Jun.
Artigo em Zh | MEDLINE | ID: mdl-15250131

RESUMO

As a kind of biomaterial, carboxymethyl chitosan (CMC) has excellent biodegradable and bioacceptable capabilities using. This study was aimed to probe into the feasibility of CMC to prepare the implantable sustained release Ciprofloxacin Hydrochloride (CPX) microspheres(MS), and to go further into the pharmaceutic technology, the morphology and the characteristics of in vitro release of the microspheres. First, we prepared the microspheres by emulsification and cross-linking technology. Then, scanning electron microscopy (SEM), infrared spectrum (IR) and differential thermal analysis (DTA) were used to detect the structure and morphology of the MS. The in vitro release of CPX/CMC-MS and the CPX content of the MS were detected through continuous-flow releasing system. We found that the structure and morphology of the MS were affected by the conditions of preparation such as emulsification and cross-linking temperature, ionic strength and stirring speed, that the releasing time of CPX was more than 7 days, and that the releasing behaviors of the microspheres conformed to the Higuchi model. So we drew the conclusions that CMC could be used as a kind of absorbable and implantable adjuvant for sustained release, the technology of emulsification and cross-linking was proved to be feasible, stable and simple.


Assuntos
Implantes Absorvíveis , Quitina , Quitina/análogos & derivados , Quitosana , Ciprofloxacina , Materiais Biocompatíveis , Biodegradação Ambiental , Quitina/administração & dosagem , Quitina/farmacocinética , Ciprofloxacina/administração & dosagem , Ciprofloxacina/farmacocinética , Reagentes de Ligações Cruzadas , Preparações de Ação Retardada , Portadores de Fármacos/síntese química , Humanos , Microesferas
20.
Artigo em Zh | MEDLINE | ID: mdl-24796205

RESUMO

OBJECTIVE: To review the application status and research progress of alginate dressings. METHODS: The related home and abroad literature was reviewed, and the relevant product standards and regulations were summarized. RESULTS: Alginate dressings have been widely used in clinical because of the characteristics of anti-infection and promoting wound healing. It is mainly used on the wound surface and filled in the wound. Pure alginate dressing is limited in promoting wound healing. A large number of studies are devoted to promoting the activity with other polymer composite to get better dressing. In addition, the industry standards and regulation of alginate dressing products are also gradually improved and standardized. CONCLUSION: Alginate dressing, as an advanced bio-dressing, whose effectiveness has been confirmed, its derivative dressings are also continuously expanding.


Assuntos
Alginatos/química , Alginatos/uso terapêutico , Antibacterianos/uso terapêutico , Bandagens , Bandagens/classificação , Bandagens/normas , Curativos Biológicos , Quitosana , Gelatina , Humanos , Curativos Oclusivos , Controle de Qualidade , Compostos de Prata , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA