Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 38(28): 8495-8501, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35776942

RESUMO

The cellulose nanocrystals (CNCs) are shown to interact with amine-functionalized polyhedral oligomeric silsesquioxane (POSS-NH2) strongly at the water/oil interface, forming the CNC-POSS assemblies, that is, CNC surfactants that decrease the interfacial tension of the water/chloroform greatly. When bringing the CNC aqueous solution and POSS chloroform solution into a Langmuir trough, they form a monolayer of the CNC surfactants. Upon applying a continuous compression, a distinct transition appears in the surface pressure-area curves, and during this transition, the packing of the CNC surfactants in the produced monolayers transits from network-like patterns to ordered alignment.

2.
Anal Bioanal Chem ; 414(27): 7855-7863, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36136114

RESUMO

Recombinant protein engineering design affects therapeutic properties including protein efficacy, safety, and immunogenicity. Importantly, glycosylation modulates glycoprotein therapeutic pharmacokinetics, pharmacodynamics, and effector functions. Furthermore, the development of fusion proteins requires in-depth characterization of the protein integrity and its glycosylation to evaluate their critical quality attributes. Fc-fusion proteins can be modified by complex glycosylation on the active peptide, the fragment crystallizable (Fc) domain, and the linker peptides. Moreover, the type of glycosylation and the glycan distribution at a given glycosite depend on the host cell line and the expression system conditions that significantly impact safety and efficacy. Because of the inherent heterogeneity of glycosylation, it is necessary to assign glycan structural detail for glycoprotein quality control. Using conventional reversed-phase LC-MS methods, the different glycoforms at a given glycosite elute over a narrow retention time window, and glycopeptide ionization is suppressed by co-eluting non-modified peptides. To overcome this drawback, we used nanoHILIC-MS to characterize the complex glycosylation of UTI-Fc, a fusion protein that greatly increases the half-life of ulinastatin. By this methodology, we identified and characterized ulinastatin glycopeptides at the Fc domain and linker peptide. The results described herein demonstrate the advantages of nanoHILIC-MS to elucidate glycan features on glycotherapeutics that fail to be detected using traditional reversed-phase glycoproteomics.


Assuntos
Glicopeptídeos , Glicoproteínas , Glicopeptídeos/química , Glicoproteínas/metabolismo , Glicosilação , Polissacarídeos , Proteínas Recombinantes/metabolismo
3.
Mol Biol Rep ; 49(6): 4673-4681, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35366759

RESUMO

BACKGROUND: Extracellular vesicles (EVs) contain thousands of proteins and nucleic acids, playing an important role in cell-cell communications. Sertoli cells have been essential in the testis as a "nurse cell". However, EVs derived from human Sertoli cells (HSerCs) have not been well investigated. METHODS: EVs were isolated from HSerCs via ultracentrifugation and characterized by transmission electron microscopy, tunable resistive pulse sensing, and Western blotting. The cargo carried by HSerCs-EVs was measured via liquid chromatography-mass spectrometry and GeneChip miRNA Arrays. Bioinformatic analysis was performed to reveal potential functions of HSerCs-EVs. RESULTS: A total of 860 proteins with no less than 2 unique peptides and 88 microRNAs with high signal values were identified in HSerCs-EVs. Biological processes related to molecular binding, enzyme activity, and regulation of cell cycle were significantly enriched. Specifically, many proteins in HSerCs-EVs were associated with spermatogenesis and regulation of immune system, including Septins, Large proline-rich protein BAG6, Clusterin, and Galectin-1. Moreover, abundant microRNAs within HSerCs-EVs (miR-638, miR-149-3p, miR-1246, etc.) had a possible impact on male reproductive disorders such as asthenozoospermia and oligozoospermia. CONCLUSIONS: Our study has shown that HSerCs-EVs contain diverse components such as proteins and microRNAs. Further research is required to evaluate HSerCs-EVs in spermatogenesis, which are underutilized but highly potent resources with particular promise for male infertility.


Assuntos
Vesículas Extracelulares , MicroRNAs , Cromatografia Líquida , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Masculino , MicroRNAs/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas/metabolismo , Proteômica , Células de Sertoli/metabolismo
4.
Biotechnol Appl Biochem ; 69(3): 1209-1216, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34008246

RESUMO

Tuberculosis, caused by mycobacteria, continues to pose a substantial public health threat. Mycobacteria typically use cholesterol from the membranes of host macrophages as a carbon and energy source. Most genes that control cholesterol degradation are regulated by KstR, which is highly conserved in Mycobacterium tuberculosis and Mycobacterium smegmatis. Through bioinformatic analysis, we found a typical global nitrogen regulator (GlnR)-binding motif (CCGAC-AACAGT-GACAC) in the promoter region of kstR of M. smegmatis, and we determined its binding activity in vitro using electrophoretic mobility shift assays. Using RT-qPCR, we found that nine genes involved in side-chain or sterol-ring oxidation were upregulated in a ΔglnR M. smegmatis strain compared to the WT strain and glnR-complemented strains under nitrogen limitation. ATP assays in macrophages revealed that coordinated GlnR-KstR regulation significantly reduced the viability of M. smegmatis in macrophages. Thus, we found that various genes involved in cholesterol catabolism are regulated by GlnR via KstR in response to environmental nitrogen, and that they further affect the invasive ability of M. smegmatis. These findings revealed a novel regulatory mechanism of cholesterol catabolism, which may be useful in the development of new strategies for controlling tuberculosis.


Assuntos
Mycobacterium smegmatis , Tuberculose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Nitrogênio/metabolismo
5.
Mol Carcinog ; 60(5): 313-330, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33631046

RESUMO

Oncogenic high-risk human papillomavirus (HR-HPV) infection causes a majority of cases of cervical cancer and pre-cancerous cervical lesions. However, the mechanisms underlying the direct evolution from HPV-16/18-infected epithelium to cervical intraepithelial neoplasia (CIN) III, which can progress to cervical cancer, remain poorly identified. Here, we performed RNA-seq after laser capture microdissection, and found that APOBEC3B was highly expressed in cervical cancer specimens compared with CIN III with HPV-16/18 infection. Furthermore, immunohistochemical analysis confirmed that high levels of APOBEC3B were correlated with lymph node metastasis in cervical cancer. Subsequent experiments revealed that HPV-16 E6 could upregulate APOBEC3B through direct binding to the promoter of APOBEC3B in cervical cancer cells. Silencing of APOBEC3B by stable short hairpin RNA-mediated knockdown reduced the proliferative capacity of Caski and HeLa cells in vitro and in vivo, but had only a small effect on the migration and invasion of two cervical cancer cell lines. Finally, we identified the changes in gene expression following APOBEC3B silencing in Caski cells by microarray, demonstrating a biological link between APOBEC3B and CCND1 in cervical cancer cells. Importantly, through methyl-capture sequencing and pyrosequencing, APOBEC3B was found to affect the levels of the downstream protein Cyclin D1 (which is encoded by the CCND1 gene) through hypomethylation of the CCND1 promoter. In conclusion, our study supports HPV-16 E6-induced APOBEC3B expression associates with proliferation of cervical cancer cells and hypomethylation of Cyclin D1. Thus, APOBEC3B may be a potential therapeutic target in human cervical cancer.


Assuntos
Ciclina D1/genética , Citidina Desaminase/genética , Papillomavirus Humano 16/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias do Colo do Útero/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ilhas de CpG , Ciclina D1/metabolismo , Citidina Desaminase/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HeLa , Papillomavirus Humano 18/metabolismo , Humanos , Camundongos , Antígenos de Histocompatibilidade Menor/metabolismo , Transplante de Neoplasias , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Análise de Sequência de RNA , Regulação para Cima , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
6.
Acta Pharmacol Sin ; 41(1): 73-81, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31427695

RESUMO

Kaempferol is a natural flavonol that possesses various pharmacological activities, including anti-arthritis effects, yet the underlying mechanisms remain controversial. To evaluate the anti-arthritis efficacy and the underlying mechanisms of kaempferol, collagen-induced arthritis (CIA) mice were treated with kaempferol intragastrically (200 mg · kg-1 · d-1) and intraperitoneally (20 mg · kg-1 · d-1). Pharmacodynamic and pharmacokinetic studies showed that the oral administration of kaempferol produced distinct anti-arthritis effects in model mice with arthritis in terms of the spleen index, arthritis index, paw thickness, and inflammatory factors; the bioavailability (1.5%, relative to that of the intraperitoneal injection) and circulatory exposure of kaempferol (Cmax = 0.23 ± 0.06 ng/mL) and its primary metabolite kaempferol-3-O-glucuronide (Cmax = 233.29 ± 89.64 ng/mL) were rather low. In contrast, the intraperitoneal injection of kaempferol caused marginal anti-arthritis effects, although it achieved a much higher in vivo exposure. The much higher kaempferol content in the gut implicated a potential mechanism involved in the gut. Analysis of 16S ribosomal RNA revealed that CIA caused imbalance of 14 types of bacteria at the family level, whereas kaempferol largely rebalanced the intestinal microbiota in CIA mice. A metabolomics study showed that kaempferol treatment significantly reversed the perturbation of metabolites involved in energy production and the tryptophan, fatty acid and secondary bile acid metabolisms in the gut contents of the CIA mice. In conclusion, we demonstrate for the first time that the high level of kaempferol in the gut regulates the intestinal flora and microbiotic metabolism, which are potentially responsible for the anti-arthritis activities of kaempferol.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Autoanticorpos/análise , Bovinos , Colágeno Tipo II , Citocinas/análise , Modelos Animais de Doenças , Quempferóis/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos DBA
7.
Sheng Li Xue Bao ; 71(5): 705-716, 2019 Oct 25.
Artigo em Zh | MEDLINE | ID: mdl-31646324

RESUMO

The aim of the present study was to investigate the differences of the pathological changes and cognitive function after bilateral common carotid artery occlusion (BCCAO) between Sprague-Dawley (SD) and Wistar rats. Male SD and Wistar rats were randomly divided into 2 groups, respectively: sham operated (S-sham and W-sham) and operated (S-BCCAO and W-BCCAO) groups. The survival rate and the rate of loss of pupillary light reflex (PLR) were observed on day 1, 3, 7, 14 and 28 after the operation, and the light-dark box, Y-maze and odor recognition tests were performed to detect cognitive function on day 28 after the operation. HE and Luxol fast blue staining were used to observe the pathological changes of gray matter (hippocampus), white matter (optical tract), optic nerve, and retina. The results showed that the survival rate of the W-BCCAO group was 62.5%, and PLR loss rate was 100%; whereas the survival rate of the S-BCCAO group was 100%, and PLR loss rate was 58.3%. In the W-BCCAO group, percentages of time spent and distance traveled in the light box were more than those in the W-sham group, but there was no statistical significance between the S-BCCAO and S-sham groups. In the S-BCCAO group, the percentages of time spent and distance traveled in the III arm (labyrinth arm) of the Y-maze were less than those in the S-sham group, but no statistical significance was found between the W-BCCAO group and W-sham group. In the S-BCCAO group, the discrimination ratio of the odor recognition task was less than that in the S-sham group, but no statistical significance could be seen between the W-BCCAO and W-sham groups. Ischemic injury was observed in the CA1 area of the hippocampus in the S-BCCAO group, but no readily visible damage was observed in the W-BCCAO group. Ischemic injury of the visual beam and optic nerve was observed in both the S-BCCAO and W-BCCAO groups. Compared with the corresponding sham groups, the S-BCCAO and W-BCCAO groups showed serious retinal damage with significant thinner retina. The ganglion cell layer (GCL), inner plexiform layer (IPL), and outer plexiform layer (OPL) were thinner in the S-BCCAO group, but no statistical significances were shown in the other layers. All the layers, except the outer nuclear layer (ONL), were significantly thinner in the W-BCCAO group. The results indicate that there are differences of the pathological changes in the hippocampus and visual conduction pathway after BCCAO between SD and Wistar rats, and the degree of learning and memory injury was also different, which suggests that the vascular dementia model of different rat strains should be selected according to research purpose.


Assuntos
Encéfalo/patologia , Doenças das Artérias Carótidas/patologia , Artéria Carótida Primitiva/patologia , Cognição , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar
8.
J Pharmacol Exp Ther ; 366(2): 291-302, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29752426

RESUMO

Follistatin (FS) is an important regulatory protein, a natural antagonist for transforming growth factor-ß family members activin and myostatin. The diverse biologic roles of the activin and myostatin signaling pathways make FS a promising therapeutic target for treating human diseases exhibiting inflammation, fibrosis, and muscle disorders, such as Duchenne muscular dystrophy. However, rapid heparin-mediated hepatic clearance of FS limits its therapeutic potential. We targeted the heparin-binding loop of FS for site-directed mutagenesis to improve clearance parameters. By generating a series of FS variants with one, two, or three negative amino acid substitutions, we demonstrated a direct and proportional relationship between the degree of heparin-binding affinity in vitro and the exposure in vivo. The triple mutation K(76,81,82)E abolished heparin-binding affinity, resulting in ∼20-fold improved in vivo exposure. This triple mutant retains full functional activity and an antibody-like pharmacokinetic profile, and shows a superior developability profile in physical stability and cell productivity compared with FS variants, which substitute the entire heparin-binding loop with alternative sequences. Our surgical approach to mutagenesis should also reduce the immunogenicity risk. To further lower this risk, we introduced a novel glycosylation site into the heparin-binding loop. This hyperglycosylated variant showed a 10-fold improved exposure and decreased clearance in mice compared with an IgG1 Fc fusion protein containing the native FS sequence. Collectively, our data highlight the importance of improving pharmacokinetic properties by manipulating heparin-binding affinity and glycosylation content and provide a valuable guideline to design desirable therapeutic FS molecules.


Assuntos
Folistatina/genética , Folistatina/farmacocinética , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Feminino , Folistatina/metabolismo , Folistatina/uso terapêutico , Glicosilação , Heparina/metabolismo , Humanos , Camundongos , Mutação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Distribuição Tecidual
9.
J Ultrasound Med ; 36(8): 1571-1578, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28407283

RESUMO

OBJECTIVES: The purpose of this study was to investigate the diagnostic performance of acoustic radiation force impulse (ARFI) in assessing liver fibrosis preoperatively in infants with biliary atresia (BA). METHODS: A total of 50 consecutive infants with BA and 50 healthy infants who underwent ARFI examination were recruited. Siemens Acuson S2000 in Virtual Touch Quantification mode (Siemens Medical Solutions, Mountain View, CA) was used to measure shear wave speeds (SWSs). All infants with BA underwent a liver biopsy within 3 days after ARFI imaging. The liver fibrosis stages of specimens were defined according to the Batts-Ludwig scoring system. The correlation analysis was performed between SWSs and pathological findings. Cut-off values were determined using receiver operating characteristic (ROC) curves. RESULTS: The mean SWS in the BA group was significantly higher than controls (mean ± standard deviation): 1.89 ± 0.45 versus 1.12 ± 0.06 m/s; P < .001). A significant correlation was found between the SWSs and fibrosis stages (r = 0.719, P < .001). The cut-off value for predicting significant fibrosis (F ≥ 2), severe fibrosis (F ≥ 3), and cirrhosis (F = 4) was 1.53, 1.80 and 2.16 m/s, respectively, and the area under the ROC curve was 0.823, 0.884 and 0.917, respectively. CONCLUSIONS: Acoustic radiation force impulse imaging showed significant correlation with the severity of liver fibrosis by comparing it with liver fibrosis biopsy pathology. It may be an effective method for liver fibrosis assessment, prognosis prediction, and clinical management in infants with BA.


Assuntos
Atresia Biliar/complicações , Técnicas de Imagem por Elasticidade/métodos , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Cuidados Pré-Operatórios/métodos , Biópsia , Feminino , Humanos , Lactente , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/complicações , Masculino , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
10.
BMC Cancer ; 15: 814, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26510899

RESUMO

BACKGROUND: Studies have described vasculogenic mimicry (VM) as an alternative circulatory system to blood vessels in multiple malignant tumor types, including hepatocellular carcinoma (HCC). In the current study, we aimed to seek novel and more efficient treatment strategies by targeting VM and explore the underlying mechanisms in HCC cells. METHODS: Cell counting kit-8 (CCK-8) assay and colony survival assay were performed to explore the inhibitory effect of incarvine C (IVC) on human cancer cell proliferation. Flow cytometry was performed to analyze the cell cycle distribution after DNA staining and cell apoptosis by the Annexin V-PE and 7-AAD assay. The effect of IVC on Rho-associated, coiled-coil-containing protein kinase (ROCK) was determined by western blotting and stress fiber formation assay. The inhibitory role of IVC on MHCC97H cell VM formation was determined by formation of tubular network structures on Matrigel in vitro, real time-qPCR, confocal microscopy and western blotting techniques. RESULTS: We explored an anti-metastatic HCC agent, IVC, derived from traditional Chinese medicinal herbs, and found that IVC dose-dependently inhibited the growth of MHCC97H cells. IVC induced MHCC97H cell cycle arrest at G1 transition, which was associated with cyclin-dependent kinase 2 (CDK-2)/cyclin-E1 degradation and p21/p53 up-regulation. In addition, IVC induced apoptotic death of MHCC97H cells. Furthermore, IVC strongly suppressed the phosphorylation of the ROCK substrate myosin phosphatase target subunit-1 (MYPT-1) and ROCK-mediated actin fiber formation. Finally, IVC inhibited cell-dominant tube formation in vitro, which was accompanied with the down-regulation of VM-key factors as detected by real time-qPCR and immunofluorescence. CONCLUSIONS: Taken together, the effective inhibitory effect of IVC on MHCC97H cell proliferation and neovascularization was associated with ROCK inhibition, suggesting that IVC may be a new potential drug candidate for the treatment of HCC.


Assuntos
Compostos Azabicíclicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Ácidos Cumáricos/farmacologia , Neoplasias Hepáticas/metabolismo , Neovascularização Patológica/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Inibidores de Proteínas Quinases/farmacologia
11.
Cancer ; 120(10): 1520-31, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24863391

RESUMO

BACKGROUND: The functions of cytoskeleton-associated membrane protein 4 (CKAP4), one kind of type II transmembrane protein, are associated with the palmitoyl acyltransferase DHHC2. The objective of the current study was to investigate CKAP4/DHHC2 expression and its prognostic significance in patients with hepatocellular carcinoma (HCC). METHODS: Two independent cohorts of 416 patients with HCC were enrolled. All the patients included had defined clinicopathologic and follow-up data. Using real-time polymerase chain reaction and immunohistochemical assay, CKAP4 and DHHC2 expression were evaluated. The association between CKAP4/DHHC2 expression and HCC-specific disease-free survival and overall survival was analyzed by Kaplan-Meier curves, the log-rank test, and Multivariate Cox regression analyses. RESULTS: The data documented that CKAP4 expression was much higher in HCC tumor tissues compared with adjacent normal tissues and its expression was significantly correlated with tumor size, intrahepatic metastases, portal venous invasion, and Barcelona Clinic Liver Cancer stage of disease in 2 cohorts of patients. On survival analysis, patients with high CKAP4 expression appeared to have a favorable overall survival and a longer disease-free survival compared with those with low expression. DHHC2 expression was also examined in tissue microarray analysis by immunohistochemistry and the results demonstrated that 87.6% of the cases had low expression of DHHC2. Kaplan-Meier analysis indicated that a high level of DHHC2 expression predicted favorable overall survival and disease-free survival rates in both the training cohort and validation set. Furthermore, the combination of CKAP4 and DHHC2 was found to have a more powerful efficiency in prognosis prediction than either one alone. CONCLUSIONS: To the best of our knowledge, the current study is the first to demonstrate that the expression of CKAP4 and its palmitoyl acyltransferase DHHC2 correlates with disease progression and metastasis in patients with HCC and may provide prognostic and therapeutic value.


Assuntos
Aciltransferases/análise , Biomarcadores Tumorais/análise , Carcinoma Hepatocelular/química , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/química , Neoplasias Hepáticas/patologia , Proteínas de Membrana/análise , Proteínas Supressoras de Tumor/análise , Adulto , Idoso , Biomarcadores Tumorais/sangue , Western Blotting , China , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Gradação de Tumores , Invasividade Neoplásica , Estadiamento de Neoplasias , Ácido Palmítico/metabolismo , Veia Porta/patologia , Valor Preditivo dos Testes , Prognóstico , Modelos de Riscos Proporcionais , Reação em Cadeia da Polimerase em Tempo Real , Análise Serial de Tecidos
12.
Ecol Evol ; 14(5): e11319, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694746

RESUMO

The family Limacodidae belongs to the superfamily Zygaenoidea, which includes 1672 species commonly referred to as slug moths. Limacodidae larvae are major pests for many economically important plant species and can cause human dermatitis. At present, the structure of the mitochondrial genome (mitogenome), phylogenetic position, and adaptive evolution of slug moths are poorly understood. Herein, the mitogenomes of Parasa lepida, Phlossa conjuncta, Thosea sinensis, and Setora sinensis were sequenced and compared with other available mitogenome sequences to better characterize the mitogenomic diversity and evolution of this moth family. The mitogenomes of P. lepida, P. conjuncta, T. sinensis, and S. sinensis were confirmed to be circular in structure with lengths of 15,575 bp, 15,553 bp, 15,535 bp, and 15,529 bp, respectively. The Limacodidae mitogenomes exhibited similar nucleotide composition, codon usage, RNA structure, and control region patterns, indicating the conservation of the mitogenome in the family Limacodidae. A sliding window, Ka/Ks, and genetic distance analyses revealed that the atp8 and nad6 genes exhibited the highest levels of variability and the most rapid evolutionary rates among the 13 protein-coding genes (PCGs) encoded in these Limacodidae mitogenomes, suggesting that they may offer value as candidate DNA markers. The phylogenetic analysis recovered the overall relationship as Tortricoidea + (Sesiidae + (Zygaenoidea + (Cossoidea/+Choreutoidea + (others)))). Within Zygaenoidea, Limacodidae was recovered as monophyletic, and the phylogenetic relationships were recovered as (Phaudidae + Zyganidae) + Limacodidae in all six phylogenetic trees. The analysis indicated that P. lepida, P. conjuncta, T. sinensis, and S. sinensis are members of the Limacodidae.

13.
Int Immunopharmacol ; 131: 111850, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479157

RESUMO

Synovial angiogenesis is a key player in the development of rheumatoid arthritis (RA), and anti-angiogenic therapy is considered a promising approach for treating RA. CPD-002 has demonstrated efficacy in suppressing tumor angiogenesis as a VEGFR2 inhibitor, but its specific impacts on RA synovial angiogenesis and possible anti-RA effects need further study. We examined the influences of CPD-002 on the migration and invasion of human umbilical vein endothelial cells (HUVECs) and its impacts on HUVECs' tube formation and vessel sprouting ex vivo. The therapeutic potential of CPD-002 in adjuvant-induced arthritis (AIA) rats and its suppression of synovial angiogenesis were examined. The involvement of the VEGFR2/PI3K/AKT pathway was assessed both in HUVECs and AIA rat synovium. Here, CPD-002 inhibited the migration and invasion of VEGF-stimulated HUVECs, decreased their chemotactic response to RA fibroblast-like synoviocyte-released chemoattractants, and exhibited anti-angiogenic effects in vitro and ex vivo. CPD-002's targeting of VEGFR2 was confirmed with molecular docking and cellular thermal shift assays, supported by the abolishment of CPD-002's effects upon using VEGFR2 siRNA. CPD-002 relieved paw swelling, arthritis index, joint damage, and synovial angiogenesis, indicating its anti-arthritic and anti-angiogenic effects in AIA rats. Moreover, the anti-inflammatory effects in vivo and in vitro of CPD-002 contributed to its anti-angiogenic effects. Mechanistically, CPD-002 hindered the activation of VEGFR2/PI3K/AKT pathway in VEGF-induced HUVECs and AIA rat synovium, as evidenced by reduced p-VEGFR2, p-PI3K, and p-AKT protein levels alongside elevated PTEN protein levels. Totally, CPD-002 showed anti-rheumatoid effects via attenuating angiogenesis through the inhibition of the VEGFR2/PI3K/AKT pathway.


Assuntos
Artrite Reumatoide , Proteínas Proto-Oncogênicas c-akt , Ratos , Humanos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese , Simulação de Acoplamento Molecular , Movimento Celular , Transdução de Sinais , Artrite Reumatoide/metabolismo , Células Endoteliais da Veia Umbilical Humana , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Proliferação de Células
14.
Phytomedicine ; 128: 155512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460357

RESUMO

BACKGROUND: The overproliferation of fibroblast-like synoviocytes (FLS) contributes to synovial hyperplasia, a pivotal pathological feature of rheumatoid arthritis (RA). Shikonin (SKN), the active compound from Lithospermum erythrorhizon, exerts anti-RA effects by diverse means. However, further research is needed to confirm SKN's in vitro and in vivo anti-proliferative functions and reveal the underlying specific molecular mechanisms. PURPOSE: This study revealed SKN's anti-proliferative effects by inducing both apoptosis and autophagic cell death in RA FLS and adjuvant-induced arthritis (AIA) rat synovium, with involvement of regulating the AMPK/mTOR/ULK-1 pathway. METHODS: SKN's influences on RA FLS were assessed for proliferation, apoptosis, and autophagy with immunofluorescence staining (Ki67, LC3B, P62), EdU incorporation assay, staining assays of Hoechst, Annexin V-FITC/PI, and JC-1, transmission electron microscopy, mCherry-GFP-LC3B puncta assay, and western blot. In AIA rats, SKN's anti-arthritic effects were assessed, and its impacts on synovial proliferation, apoptosis, and autophagy were studied using Ki67 immunohistochemistry, TUNEL, and western blot. The involvement of AMPK/mTOR/ULK-1 pathway was examined via western blot. RESULTS: SKN suppressed RA FLS proliferation with reduced cell viability and decreased Ki67-positive and EdU-positive cells. SKN promoted RA FLS apoptosis, as evidenced by apoptotic nuclear fragmentation, increased Annexin V-FITC/PI-stained cells, reduced mitochondrial potential, elevated Bax/Bcl-2 ratio, and increased cleaved-caspase 3 and cleaved-PARP protein levels. SKN also enhanced RA FLS autophagy, featuring increased LC3B, reduced P62, autophagosome formation, and activated autophagic flux. Autophagy inhibition by 3-MA attenuated SKN's anti-proliferative roles, implying that SKN-induced autophagy contributes to cell death. In vivo, SKN mitigated the severity of rat AIA while also reducing Ki67 expression, inducing apoptosis, and enhancing autophagy within AIA rat synovium. Mechanistically, SKN modulated the AMPK/mTOR/ULK-1 pathway in RA FLS and AIA rat synovium, as shown by elevated P-AMPK and P-ULK-1 expression and decreased P-mTOR expression. This regulation was supported by the reversal of SKN's in vitro and in vivo effects upon co-administration with the AMPK inhibitor compound C. CONCLUSION: SKN exerted in vitro and in vivo anti-proliferative properties by inducing apoptosis and autophagic cell death via modulating the AMPK/mTOR/ULK-1 pathway. Our study revealed novel molecular mechanisms underlying SKN's anti-RA effects.


Assuntos
Proteínas Quinases Ativadas por AMP , Apoptose , Artrite Experimental , Artrite Reumatoide , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Naftoquinonas , Transdução de Sinais , Sinoviócitos , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Naftoquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos , Artrite Experimental/tratamento farmacológico , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Masculino , Proliferação de Células/efeitos dos fármacos , Humanos , Ratos Sprague-Dawley
15.
J Proteome Res ; 12(12): 5463-74, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24093440

RESUMO

The Mycobacterium tuberculosis membrane is rich in antigens that are potential targets for diagnostics and the development of new vaccines. To better understand the mechanisms underlying MTB virulence and identify new targets for therapeutic intervention, we investigated the differential composition of membrane proteomes between virulent M. tuberculosis H37Rv (MTB) and the Mycobacterium bovis BCG vaccine strain. To compare the membrane proteomes, we used LC-MS/MS analysis in combination with label-free quantitative proteomics, utilizing the area under the curve of the extracted ion chromatograms of peptides obtained from m/z and retention time alignment of MS1 features. With this approach, we obtained relative abundance ratios for 2203 identified membrane-associated proteins in high confidence. Of these proteins, 294 showed statistically significant differences of at least two fold in relative abundance between MTB and BCG membrane fractions. Our comparative analysis detected several proteins associated with known genomic regions of difference between MTB and BCG as being absent, which validated the accuracy of our approach. In further support of our label-free quantitative data, we verified select protein differences by immunoblotting. To our knowledge, we have generated the first comprehensive and high-coverage profile of comparative membrane proteome changes between virulent MTB and its attenuated relative BCG, which helps elucidate the proteomic basis of the intrinsic virulence of the MTB pathogen.


Assuntos
Proteínas de Bactérias/química , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/química , Mycobacterium bovis/química , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/patogenicidade , Proteoma/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Membrana Celular/química , Cromatografia Líquida , Loci Gênicos , Immunoblotting , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Anotação de Sequência Molecular , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Peptídeos , Proteólise , Proteômica/métodos , Espectrometria de Massas em Tandem , Tripsina/química , Virulência
16.
Anal Chem ; 85(9): 4805-12, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23581628

RESUMO

Protein engineering is a powerful tool for designing or modifying therapeutic proteins for enhanced efficacy, greater safety, reduced immunogenicity, and better delivery. GGGGS [(G4S)n] linkers are commonly used when engineering a protein, because of their flexibility and resistance to proteases. However, post-translational modifications (PTMs) can occur at the Ser residue in these linkers. Here, we report, for the first time, the occurrence of O-xylosylation at the serine residue in (G4S)n>2 linkers. The O-xylosylation was discovered as a result of molecular mass determination, peptide mapping analysis, and MS/MS sequencing. Our investigation showed that (i) O-xylosylation is a common PTM for (G4S)(n>2) linkers; (ii) GSG is the motif for O-xylosylation; and (iii) the total amount of xylosylation per linker increases as the number of GSG motifs in the linker increases. Our investigation has also shown that the O-xylosylation level is clone-dependent, to a certain degree, but the xylosylation level varies considerably among the proteins examined-from <2% to >25% per linker-likely depending on the accessibility to the sites by the xylosyltransferase. Our work demonstrates that potential therapeutic proteins containing (G4S)n linkers should be closely monitored for O-xylosylation in order to ensure that drugs are homogeneous and of high quality. The strategies for elimination and reduction of O-xylosylation were also examined and are discussed.


Assuntos
Engenharia de Proteínas , Proteínas/metabolismo , Serina/metabolismo , Xilose/metabolismo , Animais , Células CHO , Cricetulus , Mapeamento de Peptídeos , Proteínas/química , Proteínas/isolamento & purificação , Serina/química , Espectrometria de Massas em Tandem , Xilose/química
17.
Yao Xue Xue Bao ; 48(1): 104-12, 2013 Jan.
Artigo em Zh | MEDLINE | ID: mdl-23600150

RESUMO

Isoproterenol (ISO)-induced myocardial ischemia animal model has been widely applied to the study of myocardial ischemia and evaluation of drug efficacy. Metabolic profiling of endogenous compounds can make a deep insight into biochemical process of the ISO-induced myocardial ischemia rats. Herein, rats were treated with ISO (2 mg x kg(-1)) for 10 days. After the model was established by measuring myocardial histopathology and plasma creatine kinase, GC/TOF-MS was used to determine endogenous metabolites in plasma and cardiac muscle of rats, and pattern recognition was used to process the data. Results showed that the plasma metabolic profiling of ISO-induced myocardial ischemia rats was significantly different from that of the control, and it had the tendency to the normal state after the discontinue of ISO injection. Besides, the cardiac muscle of rats treated with ISO for 10 days and the normal cardiac muscle could also be separated clearly. The potential biomarkers in plasma and cardiac muscle of model rats had homogeneity and their own specialty. Biochemical metabolic pathway analysis indicated that this myocardial ischemia model was involved in the alternation of energy metabolism, saccharometabolism, lipid metabolism, nucleoside metabolism and amino acid metabolism, and in relationship with oxidative stress. These findings revealed that metabonomics may be a promising tool to evaluate myocardial ischemia rat model induced by ISO and could further extend the study of pharmacodynamic action of drugs at the molecular level.


Assuntos
Metaboloma , Metabolômica/métodos , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Animais , Creatina Quinase/sangue , Metabolismo Energético , Isoproterenol , Metabolismo dos Lipídeos , Masculino , Isquemia Miocárdica/sangue , Isquemia Miocárdica/induzido quimicamente , Estresse Oxidativo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
18.
Appl Opt ; 51(22): 5401-11, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22859028

RESUMO

We report here a narrowband high-spectral resolution sodium temperature/wind lidar recently developed at the University of Science and Technology of China (USTC) in Hefei, China (31.5 °N, 117 °E). Patterned after the Colorado State University (CSU) narrowband sodium lidar with a dye laser-based transmitter, the USTC sodium temperature/wind lidar was deployed with a number of technical improvements that facilitate automation and ease of operation; these include a home constructed pulsed dye amplifier (PDA), a beam-steering system, a star-tracking program, and an electronic timing control. With the averaged power of ∼1.2 W output from PDA and the receiving telescope diameter of 0.76 m, our lidar system has a power aperture product of ∼0.55 Wm(2) and is comparable to the CSU and the University of Illinois at Urbana-Champaign (UIUC) sodium lidar systems. The uncertainties of typical measurements induced by photon noise and laser locking fluctuation for the temperature and wind with a 2 km vertical and 15 min temporal resolutions under the nighttime clear sky condition are estimated to be ∼1.0 K and ∼1.5 m/s, respectively, at the sodium peak (e.g., 91 km), and 8 K and 10 m/s, respectively, at both sodium layer edges (e.g., 81 km and 105 km). The USTC narrowband sodium lidar has been operated regularly during the night since November 2011. Using the initial data collected, we demonstrate the reliability and suitability of these high resolution and precision datasets for studying the wave perturbations in the mesopause region.

19.
Chin J Integr Med ; 28(6): 547-553, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34921646

RESUMO

OBJECTIVE: To investigate the current status and further development of Panax genus and 6 important individual species including P. notoginseng, P. quinquefolium, P. vietnamensis, P. japonicus, P. stipuleanatus and P. zingiberensis. METHODS: The bibliometric analysis was based on the Web of Science core database platform from Thomson Reuters. Totally, 7,574 records of scientific research of Panax species published from 1900-2019 were analyzed. The statistical and visualization analysis was performed by CiteSpace and HistCite software. RESULTS: The academic research of Panax species increase promptly. Plant science is the main research field while research and experimental medicine and agricultural engineering will be the further development tendency. Particularly, the discrimination research of P. notoginseng will be the research tendency among Panax species, especially diversity research. In addition, P. vietnamensis deserves more attention in the genus Panax. CONCLUSION: This research provides a reference for further research of the genus and individual species.


Assuntos
Panax , Bibliometria
20.
Front Oncol ; 12: 1053800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408176

RESUMO

Herein, A non-invasive pathomics approach was developed to reveal the methylation status in patients with cervical squamous cell carcinoma and predict clinical outcomes and treatment response. Using the MethylMix algorithm, 14 methylation-driven genes were selected for further analysis. We confirmed that methylation-driven genes were differentially expressed in immune, stromal, and tumor cells. In addition, we constructed a methylation-driven model and explored the alterations in immunocyte infiltration between the different models. The methylation-driven subtypes identified in our investigation could effectively predict the clinical outcomes of cervical cancer. To further evaluate the level of methylation-driven patterns, we constructed a risk model with four genes. Significant correlations were observed between the score and immune response markers, including PD1 and CTLA4. Multiple immune infiltration algorithms evaluated the level of immunocyte infiltration between the high- and low-risk groups, while the components of anti-tumor immunocytes in the low-risk group were significantly increased. Subsequently, a total of 205 acquired whole-slide imaging (WSI) images were processed to capture image signatures, and the pathological algorithm was employed to construct an image prediction model based on the risk score classification. The model achieved an area under the curve (AUC) of 0.737 and 0.582 for the training and test datasets, respectively. Moreover, we conducted vitro assays for validation of hub risk gene. The proposed prediction model is a non-invasive method that combines pathomics features and genomic profiles and shows satisfactory performance in predicting patient survival and treatment response. More interdisciplinary fields combining medicine and electronics should be explored in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA