Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37373138

RESUMO

Pectobacterium spp. infect many horticultural crops worldwide and lead to serious crop losses. Zinc-uptake-regulator (Zur) proteins are present widely in prokaryotes and play an important role in pathogenicity. To uncover the role of Zur in P. odoriferum, we constructed mutant (ΔZur) and overexpression [Po (Zur)] strains of a Zur, and a virulence assay showed that the Po (Zur) was of significantly lower virulence, while the ΔZur displayed significantly increased virulence on Chinese cabbage compared to their respective control strains, wild-type P. odoriferum (Po WT) and P. odoriferum harboring an empty vector (Po (EV)) (p < 0.05). The growth curves of the ΔZur and Po (Zur) showed no obvious differences from those of the control strains. Comparative transcriptome analysis showed that Zur overexpression in P. odoriferum induced differentially expressed genes (DEGs) related to flagellum and cell motility, while mutating Zur resulted in DEGs mainly corresponding to divalent-metal-ion transport and membrane transport. Phenotypic experiments on the Po (Zur) showed that flagellum numbers and cell motility were reduced in comparison with the control, while those of the ΔZur did not change. Collectively, these results show that the Zur negatively regulates the virulence of P. odoriferum and might function via a dual mechanism dependent on dose.


Assuntos
Proteínas de Bactérias , Pectobacterium , Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Zinco/metabolismo , Transporte de Íons , Pectobacterium/genética , Pectobacterium/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
J Integr Plant Biol ; 65(12): 2552-2568, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37811725

RESUMO

Low-temperature (LT) stress threatens cucumber production globally; however, the molecular mechanisms underlying LT tolerance in cucumber remain largely unknown. Here, using a genome-wide association study (GWAS), we found a naturally occurring single nucleotide polymorphism (SNP) in the STAYGREEN (CsSGR) coding region at the gLTT5.1 locus associated with LT tolerance. Knockout mutants of CsSGR generated by clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 exhibit enhanced LT tolerance, in particularly, increased chlorophyll (Chl) content and reduced reactive oxygen species (ROS) accumulation in response to LT. Moreover, the C-repeat Binding Factor 1 (CsCBF1) transcription factor can directly activate the expression of CsSGR. We demonstrate that the LT-sensitive haplotype CsSGRHapA , but not the LT-tolerant haplotype CsSGRHapG could interact with NON-YELLOW COLORING 1 (CsNYC1) to mediate Chl degradation. Geographic distribution of the CsSGR haplotypes indicated that the CsSGRHapG was selected in cucumber accessions from high latitudes, potentially contributing to LT tolerance during cucumber cold-adaptation in these regions. CsSGR mutants also showed enhanced tolerance to salinity, water deficit, and Pseudoperonospora cubensis, thus CsSGR is an elite target gene for breeding cucumber varieties with broad-spectrum stress tolerance. Collectively, our findings provide new insights into LT tolerance and will ultimately facilitate cucumber molecular breeding.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Temperatura , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Temperatura Baixa
3.
Plant Biotechnol J ; 20(1): 75-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34487615

RESUMO

The AGAMOUS-LIKE6 (AGL6)-like genes are ancient MADS-box genes and are functionally studied in a few model plants. The knowledge of these genes in wheat remains limited. Here, by studying a 'double homoeolog mutant' of the AGL6 gene in tetraploid wheat, we showed that AGL6 was required for the development of all four whorls of floral organs with dosage-dependent effect on floret fertility. Yeast two-hybrid analyses detected interactions of AGL6 with all classes of MADS-box proteins in the ABCDE model for floral organ development. AGL6 was found to interact with several additional proteins, including the G protein ß and γ (DEP1) subunits. Analysis of the DEP1-B mutant showed a significant reduction in spikelet number per spike in tetraploid wheat, while overexpression of AGL6 in common wheat increased the spikelet number per spike and hence the grain number per spike. RNA-seq analysis identified the regulation of several meristem activity genes by AGL6, such as FUL2 and TaMADS55. Our work therefore extensively updated the wheat ABCDE model and proposed an alternative approach to improve wheat grain yield by manipulating the AGL6 gene.


Assuntos
Proteínas de Domínio MADS , Triticum , Flores , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Meristema , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/metabolismo
4.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628397

RESUMO

Diversity surveys of germplasm are important for gaining insight into the genomic basis for crop improvement; especially InDels, which are poorly understood in hexaploid common wheat. Here, we describe a map of 89,923 InDels from exome sequencing of 262 accessions of a Chinese wheat mini-core collection. Population structure analysis, principal component analysis and selective sweep analysis between landraces and cultivars were performed. Further genome-wide association study (GWAS) identified five QTL (Quantitative Trait Loci) that were associated with spike length, two of them, on chromosomes 2B and 6A, were detected in 10 phenotypic data sets. Assisted with RNA-seq data, we identified 14 and 21 genes, respectively that expressed in spike and rachis within the two QTL regions that can be further investigated for candidate genes discovery. Moreover, InDels were found to be associated with awn length on chromosomes 5A, 6B and 4A, which overlapped with previously reported genetic loci B1 (Tipped 1), B2 (Tipped 2) and Hd (Hooded). One of the genes TaAGL6 that was previously shown to affect floral organ development was found at the B2 locus to affect awn length development. Our study shows that trait-associated InDels may contribute to wheat improvement and may be valuable molecular markers for future wheat breeding.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , China , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genética
5.
BMC Plant Biol ; 20(1): 97, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131739

RESUMO

BACKGROUND: In contrast to most animal species, polyploid plant species are quite tolerant of aneuploidy. Here, the global transcriptome of four aneuploid derivatives of a synthetic hexaploid wheat line was acquired, with the goal of characterizing the relationship between gene copy number and transcript abundance. RESULTS: For most of the genes mapped to the chromosome involved in aneuploidy, the abundance of transcripts reflected the gene copy number. Aneuploidy had a greater effect on the strength of transcription of genes mapped to the chromosome present in a noneuploid dose than on that of genes mapped elsewhere in the genome. Overall, changing the copy number of one member of a homeologous set had little effect on the abundance of transcripts generated from the set of homeologs as a whole, consistent with the tolerance of aneuploidy exhibited by allopolyploids, whether in the form of a chromosomal deficit (monosomy) or chromosomal excess (trisomy). CONCLUSIONS: Our findings shed new light on the genetic regulation of homeoallele transcription and contribute to a deeper understanding of allopolyploid genome evolution, with implications for the breeding of polyploid crops.


Assuntos
Aneuploidia , Poliploidia , Transcriptoma , Triticum/genética , Dosagem de Genes
6.
Plant Biotechnol J ; 18(2): 364-372, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31254434

RESUMO

Traditional approaches for sequencing insertion ends of bacterial artificial chromosome (BAC) libraries are laborious and expensive, which are currently some of the bottlenecks limiting a better understanding of the genomic features of auto- or allopolyploid species. Here, we developed a highly efficient and low-cost BAC end analysis protocol, named BAC-anchor, to identify paired-end reads containing large internal gaps. Our approach mainly focused on the identification of high-throughput sequencing reads carrying restriction enzyme cutting sites and searching for large internal gaps based on the mapping locations of both ends of the reads. We sequenced and analysed eight libraries containing over 3 200 000 BAC end clones derived from the BAC library of the tetraploid potato cultivar C88 digested with two restriction enzymes, Cla I and Mlu I. About 25% of the BAC end reads carrying cutting sites generated a 60-100 kb internal gap in the potato DM reference genome, which was consistent with the mapping results of Sanger sequencing of the BAC end clones and indicated large differences between autotetraploid and haploid genotypes in potato. A total of 5341 Cla I- and 165 Mlu I-derived unique reads were distributed on different chromosomes of the DM reference genome and could be used to establish a physical map of target regions and assemble the C88 genome. The reads that matched different chromosomes are especially significant for the further assembly of complex polyploid genomes. Our study provides an example of analysing high-coverage BAC end libraries with low sequencing cost and is a resource for further genome sequencing studies.


Assuntos
Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Genoma de Planta , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Cromossomos Artificiais Bacterianos/genética , Biblioteca Gênica , Genoma de Planta/genética , Genômica/métodos , Análise de Sequência de DNA , Solanum tuberosum/genética
7.
New Phytol ; 221(2): 1023-1035, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30256420

RESUMO

DNA methylation is dynamically involved in plant immunity, but little information is known about its roles in plant interactions with biotrophic fungi, especially in temperate grasses such as wheat (Triticum aestivum). Using wheat diploid progenitor Aegilops tauschii accession AL8/78, the genome of which has been sequenced, we assessed the extent of DNA methylation in response to infection with Blumeria graminis f. sp. tritici (Bgt), which causes powdery mildew. Upon Bgt infection, ARGONAUTE4a (AGO4a) was significantly downregulated in A. tauschii, which was accompanied by a substantial reduction in AGO4a-sorted 24-nt siRNA levels, especially for genes near transposable elements (TAGs). Bisulfite sequencing revealed abundant differentially methylated regions (DMRs) with CHH hypomethylation. TAGs bearing CHH-hypomethylated DMRs were enriched for 'response to stress' functions, including receptor kinase, peroxidase, and pathogenesis-related genes. Virus-induced gene silencing (VIGS) of a DOMAINS REARRANGED METHYLASE 2 (DRM2) homolog enhanced plant resistance to Bgt. The effect of CHH hypomethylation was exemplified by the upregulation of a pathogenesis-related ß-1,3-glucanse gene implicated in Bgt defense. These findings support the idea that dynamic DNA methylation represents a regulatory layer in the complex mechanism of plant immunity, which could be exploited to improve disease resistance in common wheat.


Assuntos
Aegilops/genética , Ascomicetos/fisiologia , Metilação de DNA , Resistência à Doença , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Aegilops/imunologia , Aegilops/microbiologia , Interações Hospedeiro-Patógeno , Proteínas de Plantas/genética , Triticum/genética
8.
J Integr Plant Biol ; 61(6): 675-690, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30938052

RESUMO

As essential B vitamin for humans, folates accumulation in edible parts of crops, such as maize kernels, is of great importance for human health. But its breeding is always limited by the prohibitive cost of folate profiling. The molecular breeding is a more executable and efficient way for folate fortification, but is limited by the molecular knowledge of folate regulation. Here we report the genetic mapping of folate quantitative trait loci (QTLs) using a segregated population crossed by two maize lines, one high in folate (GEMS31) and the other low in folate (DAN3130). Two folate QTLs on chromosome 5 were obtained by the combination of F2 whole-exome sequencing and F3 kernel-folate profiling. These two QTLs had been confirmed by bulk segregant analysis using F6 pooled DNA and F7 kernel-folate profiling, and were overlapped with QTLs identified by another segregated population. These two QTLs contributed 41.6% of phenotypic variation of 5-formyltetrahydrofolate, the most abundant storage form among folate derivatives in dry maize grains, in the GEMS31×DAN3130 population. Their fine mapping and functional analysis will reveal details of folate metabolism, and provide a basis for marker-assisted breeding aimed at the enrichment of folates in maize kernels.


Assuntos
Mapeamento Cromossômico , Segregação de Cromossomos/genética , Ácido Fólico/metabolismo , Locos de Características Quantitativas/genética , Zea mays/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Estudos de Associação Genética , Ligação Genética , Fenótipo , Recombinação Genética/genética , Tetra-Hidrofolatos/metabolismo , Sequenciamento do Exoma
9.
Plant Physiol ; 174(3): 1779-1794, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28515146

RESUMO

Early reproductive development in cereals is crucial for final grain number per spike and hence the yield potential of the crop. To date, however, no systematic analyses of gene expression profiles during this important process have been conducted for common wheat (Triticum aestivum). Here, we studied the transcriptome profiles at four stages of early wheat reproductive development, from spikelet initiation to floral organ differentiation. K-means clustering and stage-specific transcript identification detected dynamically expressed homeologs of important transcription regulators in spikelet and floral meristems that may be involved in spikelet initiation, floret meristem specification, and floral organ patterning, as inferred from their homologs in model plants. Small RNA transcriptome sequencing discovered key microRNAs that were differentially expressed during wheat inflorescence development alongside their target genes, suggesting that miRNA-mediated regulatory mechanisms for floral development may be conserved in cereals and Arabidopsis. Our analysis was further substantiated by the functional characterization of the ARGONAUTE1d (AGO1d) gene, which was initially expressed in stamen primordia and later in the tapetum during anther maturation. In agreement with its stage-specific expression pattern, the loss of function of the predominantly expressed B homeolog of AGO1d in a tetraploid durum wheat mutant resulted in smaller anthers with more infertile pollens than the wild type and a reduced grain number per spike. Together, our work provides a first glimpse of the gene regulatory networks in wheat inflorescence development that may be pivotal for floral and grain development, highlighting potential targets for genetic manipulation to improve future wheat yields.


Assuntos
Padronização Corporal/genética , Flores/genética , Perfilação da Expressão Gênica , Genes de Plantas , Genes Reguladores , Inflorescência/crescimento & desenvolvimento , Inflorescência/genética , Triticum/genética , Sequência de Bases , Análise por Conglomerados , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Organogênese/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Análise de Sequência de RNA , Tetraploidia
10.
Genome ; 59(1): 1-10, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26745327

RESUMO

The mechanisms underlying sexual reproduction and sex ratio determination remains unclear in turbot, a flatfish of great commercial value. And there is limited information in the turbot database regarding genes related to the reproductive system. Here, we conducted high-throughput transcriptome profiling of turbot gonad tissues to better understand their reproductive functions and to supply essential gene sequence information for marker-assisted selection programs in the turbot industry. In this study, two gonad libraries representing sex differences in Scophthalmus maximus yielded 453 818 high-quality reads that were assembled into 24 611 contigs and 33 713 singletons by using 454 pyrosequencing, 13 936 contigs and singletons (CS) of which were annotated using BLASTx. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses revealed that various biological functions and processes were associated with many of the annotated CS. Expression analyses showed that 510 genes were differentially expressed in males versus females; 80% of these genes were annotated. In addition, 6484 and 6036 single nucleotide polymorphisms (SNPs) were identified in male and female libraries, respectively. This transcriptome resource will serve as the foundation for cDNA or SNP microarray construction, gene expression characterization, and sex-specific linkage mapping in turbot.


Assuntos
Linguados/genética , Gônadas , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética , Animais , Mapeamento Cromossômico , Mapeamento de Sequências Contíguas , DNA Complementar/genética , Feminino , Perfilação da Expressão Gênica , Biblioteca Gênica , Ontologia Genética , Masculino , Anotação de Sequência Molecular , Reprodução/genética , Análise de Sequência de DNA , Razão de Masculinidade
11.
Hortic Res ; 11(2): uhad295, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38404593

RESUMO

Powdery mildew (PM) is one of the most destructive diseases that threaten cucumber production globally. Efficient breeding of novel PM-resistant cultivars will require a robust understanding of the molecular mechanisms of cucumber resistance against PM. Using a genome-wide association study, we detected a locus significantly correlated with PM resistance in cucumber stem, pm-s5.1. A 1449-bp insertion in the CsMLO8 coding region at the pm-s5.1 locus resulted in enhanced stem PM resistance. Knockout mutants of CsMLO8 and CsMLO11 generated by CRISPR/Cas9 both showed improved PM resistance in the stem, hypocotyl, and leaves, and the double mutant mlo8mlo11 displayed even stronger resistance. We found that reactive oxygen species (ROS) accumulation was higher in the stem of these mutants. Protein interaction assays suggested that CsMLO8 and CsMLO11 could physically interact with CsRbohD and CsCRK2, respectively. Further, we showed that CsMLO8 and CsCRK2 competitively interact with the C-terminus of CsRbohD to affect CsCRK2-CsRbohD module-mediated ROS production during PM defense. These findings provide new insights into the understanding of CsMLO proteins during PM defense responses.

12.
Front Genet ; 14: 1137471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923786

RESUMO

The development of the horticultural industry is largely limited by disease and excessive pesticide application. MicroRNAs constitute a major portion of the transcriptomes of eukaryotes. Various microRNAs have been recognized as important regulators of the expression of genes involved in essential biological processes throughout the whole life cycle of plants. Recently, small RNA sequencing has been applied to study gene regulation in horticultural plants. In this review, we summarize the current understanding of the biogenesis and contributions of microRNAs in horticultural plant disease resistance. These microRNAs may potentially be used as genetic resources for improving disease resistance and for molecular breeding. The challenges in understanding horticultural plant microRNA biology and the possibilities to make better use of these horticultural plant gene resources in the future are discussed in this review.

13.
Front Plant Sci ; 14: 1116214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235012

RESUMO

Low temperatures (LTs) negatively affect the percentage and rate of cucumber (Cucumis sativus L.) seed germination, which has deleterious effects on yield. Here, a genome-wide association study (GWAS) was used to identify the genetic loci underlying low temperature germination (LTG) in 151 cucumber accessions that represented seven diverse ecotypes. Over two years, phenotypic data for LTG i.e., relative germination rate (RGR), relative germination energy (RGE), relative germination index (RGI) and relative radical length (RRL), were collected in two environments, and 17 of the 151 accessions were found to be highly cold tolerant using cluster analysis. A total of 1,522,847 significantly associated single-nucleotide polymorphism (SNP) were identified, and seven loci associated with LTG, on four chromosomes, were detected: gLTG1.1, gLTG1.2, gLTG1.3, gLTG4.1, gLTG5.1, gLTG5.2, and gLTG6.1 after resequencing of the accessions. Of the seven loci, three, i.e., gLTG1.2, gLTG4.1, and gLTG5.2, showed strong signals that were consistent over two years using the four germination indices, and are thus strong and stable for LTG. Eight candidate genes associated with abiotic stress were identified, and three of them were potentially causal to LTG: CsaV3_1G044080 (a pentatricopeptide repeat-containing protein) for gLTG1.2, CsaV3_4G013480 (a RING-type E3 ubiquitin transferase) for gLTG4.1, and CsaV3_5G029350 (a serine/threonine-protein kinase) for gLTG5.2. The function for CsPPR (CsaV3_1G044080) in regulating LTG was confirmed, as Arabidopsis lines ectopically expressing CsPPR showed higher germination and survival rates at 4°C compared to the wild-type, which preliminarily illustrates that CsPPR positively regulates cucumber cold tolerance at the germination stage. This study will provide insights into cucumber LT-tolerance mechanisms and further promote cucumber breeding development.

14.
Biology (Basel) ; 11(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35205147

RESUMO

Grain development, as a vital process in the crop's life cycle, is crucial for determining crop quality and yield. The wheat grain expanding phase is the early process involving the rapid morphological changes and initiation of grain filling. However, little is known about the molecular basis of grain development at this stage. Here, we provide a time-series transcriptome profile of developing wheat grain at 0, 2, 4, 6, 8, and 10 days after pollination of the wheat landrace Chinese Spring. A total of 26,892 differentially expressed genes, including 1468 transcription factors, were found between adjacent time points. Co-expression cluster analysis and Gene Ontology enrichment revealed dynamic expressions of cell division and starch biosynthesis related structural genes and transcription factors. Moreover, diverse, differential and drastically varied expression trends of the key genes related to hormone metabolism were identified. Furthermore, ~30% of triads showed unbalanced expression patterns enriching for genes in multiple pivotal metabolic pathways. Hormone metabolism related genes, such as YUC10 (YUCCA flavin-containing monooxygenase 10), AOS2 (allene oxide synthase 2), CYP90D2 (cytochrome P450 90D2), and CKX1 (cytokinin dehydrogenase 1), were dominantly contributed by A or D homoeologs of the triads. Our study provided a systematic picture of transcriptional regulation of wheat grains at the early grain expanding phase which should deepen our understanding of wheat grain development and help in wheat yield improvement.

15.
Nat Commun ; 13(1): 5707, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175442

RESUMO

Rice bean (Vigna umbellata) is an underexploited domesticated legume crop consumed for dietary protein in Asia, yet little is known about the genetic diversity of this species. Here, we present a high-quality reference genome for a rice bean landrace (FF25) built using PacBio long-read data and a Hi-C chromatin interaction map, and assess the phylogenetic position and speciation time of rice bean within the Vigna genus. We sequence 440 landraces (two core collections), and GWAS based on data for growth sites at three widely divergent latitudes reveal loci associated with flowering and yield. Loci harboring orthologs of FUL (FRUITFULL), FT (FLOWERING LOCUS T), and PRR3 (PSEUDO-RESPONSE REGULATOR 3) contribute to the adaptation of rice bean from its low latitude center of origin towards higher latitudes, and the landraces which pyramid early-flowering alleles for these loci display maximally short flowering times. We also demonstrate that copy-number-variation for VumCYP78A6 can regulate seed-yield traits. Intriguingly, 32 landraces collected from a mountainous region in South-Central China harbor a recently acquired InDel in TFL1 (TERMINAL FLOWER1) affecting stem determinacy; these materials also have exceptionally high values for multiple human-desired traits and could therefore substantially advance breeding efforts to improve rice bean.


Assuntos
Vigna , Cromatina , Genômica , Humanos , Filogenia , Melhoramento Vegetal , Vigna/genética
16.
Genome Biol ; 22(1): 13, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402202

RESUMO

BACKGROUND: Structural variations (SVs), a major resource of genomic variation, can have profound consequences on phenotypic variation, yet the impacts of SVs remain largely unexplored in crops. RESULTS: Here, we generate a high-quality de novo genome assembly for a flat-fruit peach cultivar and produce a comprehensive SV map for peach, as a high proportion of genomic sequence is occupied by heterozygous SVs in the peach genome. We conduct population-level analyses that indicate SVs have undergone strong purifying selection during peach domestication, and find evidence of positive selection, with a significant preference for upstream and intronic regions during later peach improvement. We perform a SV-based GWAS that identifies a large 1.67-Mb heterozygous inversion that segregates perfectly with flat-fruit shape. Mechanistically, this derived allele alters the expression of the PpOFP2 gene positioned near the proximal breakpoint of the inversion, and we confirm in transgenic tomatoes that PpOFP2 is causal for flat-fruit shape. CONCLUSIONS: Thus, beyond introducing new genomics resources for peach research, our study illustrates how focusing on SV data can drive basic functional discoveries in plant science.


Assuntos
Inversão Cromossômica , Frutas/anatomia & histologia , Frutas/genética , Genoma de Planta , Variação Estrutural do Genoma , Prunus persica/genética , Produtos Agrícolas/genética , Domesticação , Regulação da Expressão Gênica de Plantas , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional
17.
Nat Commun ; 12(1): 3604, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127667

RESUMO

A narrow genetic basis in modern cultivars and strong linkage disequilibrium in peach (Prunus persica) has restricted resolution power for association studies in this model fruit species, thereby limiting our understanding of economically important quality traits including fruit flavor. Here, we present a high-quality genome assembly for a Chinese landrace, Longhua Shui Mi (LHSM), a representative of the Chinese Cling peaches that have been central in global peach genetic improvement. We also map the resequencing data for 564 peach accessions to this LHSM assembly at an average depth of 26.34× per accession. Population genomic analyses reveal a fascinating history of convergent selection for sweetness yet divergent selection for acidity in eastern vs. western modern cultivars. Molecular-genetics and biochemical analyses establish that PpALMT1 (aluminum-activated malate transporter 1) contributes to their difference of malate content and that increases fructose content accounts for the increased sweetness of modern peach fruits, as regulated by PpERDL16 (early response to dehydration 6-like 16). Our study illustrates the strong utility of the genomics resources for both basic and applied efforts to understand and exploit the genetic basis of fruit quality in peach.


Assuntos
Frutas/genética , Genoma de Planta , Metagenômica , Prunus persica/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Loci Gênicos , Variação Genética , Tamanho do Genoma , Genômica , Desequilíbrio de Ligação , Filogenia , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Prunus persica/classificação , Prunus persica/metabolismo , Análise de Sequência de DNA , Açúcares
18.
Genomics Proteomics Bioinformatics ; 18(3): 221-229, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32561470

RESUMO

In the year 2018, the world witnessed the finale of the race to sequence the genome of the world's most widely grown crop, the common wheat. Wheat has been known to bear a notoriously large and complicated genome of a polyploidy nature. A decade competition to sequence the wheat genome initiated with a single consortium of multiple countries, taking a conventional strategy similar to that for sequencing Arabidopsis and rice, became ferocious over time as both sequencing technologies and genome assembling methodologies advanced. At different stages, multiple versions of genome sequences of the same variety (e.g., Chinese Spring) were produced by several groups with their special strategies. Finally, 16 years after the rice genome was finished and 9 years after that of maize, the wheat research community now possesses its own reference genome. Armed with these genomics tools, wheat will reestablish itself as a model for polyploid plants in studying the mechanisms of polyploidy evolution, domestication, genetic and epigenetic regulation of homoeolog expression, as well as defining its genetic diversity and breeding on the genome level. The enhanced resolution of the wheat genome should also help accelerate development of wheat cultivars that are more tolerant to biotic and/or abiotic stresses with better quality and higher yield.


Assuntos
Cromossomos de Plantas/genética , Epigênese Genética , Genes de Plantas , Genoma de Planta , Poliploidia , Análise de Sequência de DNA/métodos , Triticum/genética , Pão , Mapeamento Cromossômico , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA