Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gene ; 909: 148291, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38417688

RESUMO

SARS-CoV-2 as a severe respiratory disease has been prevalent around the world since its first discovery in 2019.As a single-stranded RNA virus, its high mutation rate makes its variants manifold and enables some of them to have high pathogenicity, such as Omicron variant, the most prevalent virus now. Research on the relationship of these SARS-CoV-2 variants, especially exploring their difference is a hot issue. In this study, we constructed a geometric space to represent all SARS-CoV-2 sequences of different variants. An alignment-free method: natural vector method was utilized to establish genome space. The genome space of SARS-CoV-2 was constructed based on the 24-dimensional natural vector and the appropriate metric was determined through performing phylogenetic analysises. Phylogenetic trees of different lineages constructed under the selected natural vector and metric coincided with the lineage naming standards, which means lineages with same alphabetical prefix cluster in phylogenetic trees. Furthermore, the relationships between the various GISAID clades as depicted by the natural graph primarily matched the description provided in the GISAID clade naming.The validity of our geometric space was demonstrated by these phylogenetic analysis results. So in this research, we constructed a geometry space for the genomes of the novel coronavirus SARS-CoV-2, which allows us to compare the different variants. Our geometric space is valuable for resolving the issues insides the virus.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Filogenia , Taxa de Mutação
2.
Genes (Basel) ; 13(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36292629

RESUMO

The classification of protein sequences provides valuable insights into bioinformatics. Most existing methods are based on sequence alignment algorithms, which become time-consuming as the size of the database increases. Therefore, there is a need to develop an improved method for effectively classifying protein sequences. In this paper, we propose a novel accumulated natural vector method to cluster protein sequences at a lower time cost without reducing accuracy. Our method projects each protein sequence as a point in a 250-dimensional space according to its amino acid distribution. Thus, the biological distance between any two proteins can be easily measured by the Euclidean distance between the corresponding points in the 250-dimensional space. The convex hull analysis and classification perform robustly on virus and bacteria datasets, effectively verifying our method.


Assuntos
Aminoácidos , Bactérias , Filogenia , Sequência de Aminoácidos , Alinhamento de Sequência , Aminoácidos/química , Bactérias/genética
3.
Front Genet ; 12: 828805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35186019

RESUMO

A comprehensive description of human genomes is essential for understanding human evolution and relationships between modern populations. However, most published literature focuses on local alignment comparison of several genes rather than the complete evolutionary record of individual genomes. Combining with data from the 1,000 Genomes Project, we successfully reconstructed 2,504 individual genomes and propose Divided Natural Vector method to analyze the distribution of nucleotides in the genomes. Comparisons based on autosomes, sex chromosomes and mitochondrial genomes reveal the genetic relationships between populations, and different inheritance pattern leads to different phylogenetic results. Results based on mitochondrial genomes confirm the "out-of-Africa" hypothesis and assert that humans, at least females, most likely originated in eastern Africa. The reconstructed genomes are stored on our server and can be further used for any genome-scale analysis of humans (http://yaulab.math.tsinghua.edu.cn/2022_1000genomesprojectdata/). This project provides the complete genomes of thousands of individuals and lays the groundwork for genome-level analyses of the genetic relationships between populations and the origin of humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA