Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 35(17)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38150721

RESUMO

5,6,11,12-tetraphenylnaphthacene (rubrene) exhibits resonant energy properties (ES1,rub≈ 2ET1,rub), resulting in rubrene-based organic light-emitting diode (OLED) devices that undergo the singlet fission (STT) process at room temperature. This unique process gives rise to a distinct magneto-electroluminescence (MEL) profile, differing significantly from the typical intersystem crossing (ISC) process. Therefore, in this paper, we investigate charge generation and separation in the interconnector, and the mechanism of charge transport in tandem OLEDs at room temperature using MEL tools. We fabricate tandem OLEDs comprising green (Alq3) and yellow (Alq3:rubrene) electroluminescence (EL) units using different interconnectors. The results demonstrate that all devices exhibited significant rubrene emission. However, the MEL did not exhibit an STT process with an increasing magnetic field, but rather a triplet-triplet annihilation (TTA) process. This occurrence is attributed to direct carrier trapping within doped EL units, which hinders the transport of rubrene trapped charges, consequently prolonging the lifetime of triplet excitons (T1,rub). Thus, the increased T1,rubconcentration causes TTA to occur at room temperature, causing the rapid decrease of MEL in all devices under high magnetic fields. In devices where only the TTA process occurs, the TTA increases with the increasing current. Consequently, the high magnetic field of devices A-C is only related to TTA. Notably, there exists a high magnetic field TTA of device D in the Alq3/1,4,5,8,9,11-Hexaazatriphenylene-hexacarbonitrile interconnector regardless of the current. This occurs because both EL units in the device emit simultaneously, resulting in the triplet-charge annihilation process of Alq3in the high magnetic field of the MEL. Moreover, the rapid increase in MEL at low magnetic field across all devices is attributed to the ISC between Alq3polaron pairs. This entire process involves Förster and Dexter energy transfer. This article not only provides novel insights into charge generation and separation in the interconnector but also enhances our understanding of the microscopic mechanisms in tandem OLED devices.

2.
Nanotechnology ; 34(50)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37708884

RESUMO

Although the effect of the electron blocking layer (EBL) material, deoxyribonucleic acid (DNA), on the electroluminescence (EL) performance of organic light-emitting diodes (OLEDs) has been studied, the process of DNA regulation of exciton recombination region within the device is still unclear. Herein, devices with and without EBL were fabricated using different DNA spin-coating speeds, and the photoelectric performance of device were measured. By using DNA compounded with cetyltrimethyl ammonium (CTMA) as the EBL and hole buffer layer, so-called BioLEDs. The DNA-based green Alq3BioLEDs achieve higher luminance (39 000 cd m-2) and higher current efficiency (8.4 cd A-1), which are increased by 49% and 54%, respectively, compared to the reference OLEDs without the addition of DNA. Similarly, the maximum luminance and efficiency of yellow Rubrene BioLEDs is increased by 64% (from 12 120 to 19 820 cd m-2) and 74% (from 1.36 to 2.36 cd A-1), the luminance and efficiency of blue TCTA BioLEDs is increased by 101% and 245%. Specifically, we found that as the thickness of DNA-CTMA increases, the exciton recombination region moves towards the interface between the emitting layer (EML) and the hole transport layer (HTL). By better confining excitons within the EML, the current efficiency of the BioLEDs is effectively improved. Accordingly, we provide a possible idea for achieve high performance DNA-based BioLEDs by adding DNA-CTMA EBL and hole buffer layers. Meanwhile, as the DNA thickness increases, the exciton recombination region moves towards the EML/HTL interface, thereby enhancing the efficiency of the DNA-based BioLEDs.

3.
Phys Chem Chem Phys ; 25(35): 23783-23791, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37622246

RESUMO

Although the effect of the electron transport layer (ETL) material TmPyPb on the electroluminescence performance of organic light-emitting diodes (OLEDs) has been extensively studied, the process of TmPyPb regulating exciton recombination and annihilation within the device is still unclear. Here, we fabricated devices of various TmPyPb thicknesses with and without ETL. Subsequently, we measured the magneto-electroluminescence (MEL) of these devices. Specifically, at the same luminance, the triplet-charge annihilation (TQA) process is more likely to occur as the thickness of TmPyPb increases, resulting in a decrease in the maximum luminance of devices. Due to electron leakage and exciton recombination region moving towards the cathode, leading to a decrease in luminance efficiency at first and then an enhancement with an increase in the thickness of TmPyPb. Furthermore, at room temperature, the application of a large bias voltage suppresses singlet fission (SF) processes by modulating the dissociation of singlet polaron pairs (PPS) and the concentration of triplet exciton (T1). This leads to the conversion of SF to the TQA process. At low temperatures, the bias voltage and temperature can regulate the concentration and lifetime of PPS and T1. Therefore, as the temperature decreases, the transition of SF → TQA → triplet-triplet annihilation (TTA) and TQA coexistence → TTA process occurs. Moreover, MEL responses of the TmPyPb-ETL device show a W-linear pattern owing to the combined effect of the hyperfine interaction (HFI) and Zeeman splitting at 145 K. Accordingly, we explored the electroluminescence (EL) performance of TmPyPB-ETL OLEDs and investigated the evolution of SF, TQA, and TTA processes using MEL. Our study revealed the effect of exciton recombination and annihilation in OLEDs with varying thicknesses of TmPyPb.

4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(3): 648-52, 2016 Mar.
Artigo em Zh | MEDLINE | ID: mdl-27400498

RESUMO

Organic Light Emitting Diodes (OLEDs) has been a promising new research point that has received much attention recently. Emission in a conventional OLED originates from the recombination of carriers (electrons and holes) that are injected from external electrodes. In the device, Electrons, on the other hand, are injected from the Al cathode to an electron-transporting layer and travel to the same emissive zone. Holes are injected from the transparent ITO anode to a hole-transporting layer and holes reach an emitting zone through the holetransporting layer. Electrons and holes recombine at the emissive film to formsinglet excited states, followed by emissive light. It is because OLED is basically an optical device and its structure consists of organic or inorganic layers of sub-wavelength thickness with different refractive indices. When the electron and holes are injected through the electrodes, they combine in the emission zone emitting the photons. These photons will have the reflection and transmission at each interface and the interference will determine the intensity profile. The emissive light reflected at the interfaces or the metallic electrode returns to the emissive layer and affects the radiation current efficiency. Microcavity OLED can produce saturated colors and narrow the emission spetrum as a new kind of technique. In the paper, we fabricate microcavity OLED using glass substrate. Ag film acts as the anode reflector mirror; NPB serves as the hole-transporting material; Alq3 is electron-transporting material and organic emissive material; Ag film acts as cathode reflector mirror. The microcavity OLED structures named as A, B, C and D are glass/Ag(15 nm)/MoO3 (x nm)/NPB(50 nm)/Alq3 (60 nm)/A1(100 nm). Here, A, x = 4 nm; B, x = 7 nm; C, x = 10 nm; D, x = 13 nm. The characteristic voltage, brightness and current of these devices are investigated in the electric field. The luminance from the Devices A, B, C and D reaches the luminance of 928, 1 369, 2 550 and 2 035 cd x m(-2), respectively at 13 V. At 60 mA x cm(-2), the current efficiency of the microcavity OLEDs using MnO3 are about 2.2, 2.6, 3.1 and 2.6 cd x A(-2) respectively. It is found that electrons are majority carriers and holes are minority carriers in this microcavity OLEDs. MnO3 film can improve hole injection ability from 4 to 10 nm. In addition, hole injection ability is increased with the increasing thickness of the MnO3 film.

5.
Polymers (Basel) ; 15(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37571169

RESUMO

Although the effect of the conductive polymers PEDOT:PSS on the electroluminescence performance of doped-type organic light-emitting diodes (OLEDs) has been studied, the process of PEDOT:PSS regulation of exciton recombination region and concentration within the deoxyribonucleic acid (DNA)-based doped-type BioLEDs is still obscure. In this study, we fabricated Bio-devices with and without PEDOT:PSS using varying spin-coating speeds of PEDOT:PSS. The Alq3:Rubrene-based BioLEDs achieve higher luminance (44,010 cd/m2) and higher luminance efficiency (8.1 cd/A), which are increased by 186% and 478%, respectively, compared to the reference BioLEDs without PEDOT:PSS. Similarly, the maximum luminance and efficiency of blue TCTA:TPBi exciplex-type BioLEDs are increased by 224% and 464%. In particular, our findings reveal that with an increasing thickness of PEDOT:PSS, the region of exciton recombination shifts towards the interface between the emitting layer (EML) and the hole transport layer (HTL). Meanwhile, the concentration of singlet exciton (S1,Rub) and triplet exciton (T1,Rub) increases, and the triplet-triplet annihilation (TTA) process is enhanced, resulting in the enhanced luminescence and efficiency of the devices. Accordingly, we provide a possible idea for achieving high performance doped-type BioLEDs by adding conductive polymers PEDOT:PSS, and revealing the effect of exciton recombination and conversion in BioLEDs given different PEDOT:PSS thicknesses.

6.
RSC Adv ; 13(34): 23619-23625, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37555095

RESUMO

Organic light-emitting diodes (OLEDs) are considered one of the most promising new display technologies owing to their advantages, such as all-solid-state, high color gamut, and wide viewing angle. However, in terms of special fields, the brightness, lifetime, and stability of the devices need further improvement. Therefore, heterojunction devices with different concentrations were prepared to regulate device brightness. The brightness of the bulk heterojunction device is enhanced by 9740 cd m-2, with a growth rate of about 26.8%. The impact of various temperatures and various exciton concentrations on the device magneto-conductance (MC) and magneto-electroluminescence (MEL) was investigated. Experimental results demonstrate that the exciton concentration inside the device can be tuned to improve optoelectronic properties and organic magnetic effects. The complex spin mixing process inside the bulk heterojunction device is deeply investigated, which provides a reliable basis for the design of bulk heterojunction devices.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31281407

RESUMO

Postoperative peritoneal adhesions (PPAs) constitute a common complication of abdominal surgery with a high incidence. Bletilla striata (BS) is an important hemostatic drug used in China for nearly 2000 years. The purpose of this study was to investigate the effect of Bletilla striata on postoperative intestinal adhesion in rats. PPA was induced by cecal wall abrasion, and Bletilla striata was injected to observe its effect on adhesion in rats. The adhesion and inflammation score were assessed through visual observation and histopathologic evaluation. The levels of interleukin-1 (IL-1ß), tumor necrosis factor (TNF-α), and interleukin-17F (IL-17F) in abdominal cavity and interleukin-6 (IL-6) in plasma were measured by enzyme-linked immunosorbent assay (ELISA) at 6 hours, 12 hours, 24 hours, and 1 week after operation. The tissue level of transforming growth factor beta-1 (TGF-ß1) was also determined by ELISA on the seventh day after surgery. The expressions of collagen and TNF-α were, respectively, detected by Masson trichrome staining and immunohistochemical staining. The expression of TGF-ß1 and alpha smooth muscle actin (α-SMA) was detected by Western blot. The result showed that Bletilla striata has obvious preventive effect on PPAs and celiac inflammation of PPAs. Bletilla striata could significantly reduce the level of IL-17F abdominal cavity and IL-6 in plasma. Masson trichrome staining and immunohistochemical staining results showed that Bletilla striata also decreased the expression of TNF-α and collagen. Western blot results showed that Bletilla striata decreased the expression of α-SMA and TGF-ß1. Our results suggest that Bletilla striata decreased the development of abdominal adhesion in abrasion-induced model of rats and reduced the expression of the important substance which increased in PPAs. Bletilla striata can be further studied as a new and cheaper antiadhesive substance.

8.
RSC Adv ; 8(29): 15961-15966, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35542214

RESUMO

As a thin cathode buffer layer (CBL) tris-(8-hydroxyquinoline), aluminum (Alq3) is successfully introduced into the planar p-i-n perovskite solar cells (PSC) between the PCBM layer and cathode with a device structure of ITO/PEDOT:PSS/CH3NH3PbI3(Cl)/PCBM/Alq3/Ag. Due to the as-introduced thin Alq3 CBL, a high performance planar PSC has been achieved with a fill factor (FF) of 72% and maximum power conversion efficiency (PCE) of 14.22%. The PCE value is approximately 29% higher than that of the reference device without Alq3 CBL. Concerning the results of AC impedance spectra and transient photocurrent measurements, such a remarkable improvement of PCE is mainly attributed to the Alq3-caused better charge-extraction at the cathode, which is induced by reducing charge accumulation between PCBM and Ag.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA