Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047398

RESUMO

Inflammatory bowel disease (IBD) refers to chronic intestinal immune-mediated diseases including two main disease manifestations: ulcerative colitis (UC) and Crohn's disease (CD). Epidemiological, clinical, and preclinical evidence has highlighted the potential anti-inflammatory properties of naturally occurring alkaloids. In the present study, we investigated the potential anti-inflammatory activities of the tobacco alkaloids nicotine and anatabine in a dextran sulfate sodium (DSS)-induced UC mouse model with a fully humanized immune system. Our results show that nicotine significantly reduced all acute colitis symptoms and improved colitis-specific endpoints, including histopathologically assessed colon inflammation, tissue damage, and mononuclear cell infiltration. The tobacco alkaloid anatabine showed similar effectiveness trends, although they were generally weaker or not significant. Gene expression analysis in the context of biological network models of IBD further pinpointed a possible mechanism by which nicotine attenuated DSS-induced colitis in humanized mice. The current study enables further investigation of possible molecular mechanisms by which tobacco alkaloids attenuate UC symptoms.


Assuntos
Alcaloides , Antineoplásicos , Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Nicotiana/efeitos adversos , Nicotina/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Modelos Animais de Doenças , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Alcaloides/farmacologia , Alcaloides/metabolismo , Sistema Imunitário/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Colo/metabolismo
2.
Arch Toxicol ; 95(10): 3341-3359, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34313809

RESUMO

Aging and smoking are major risk factors for cardiovascular diseases (CVD). Our in vitro study compared, in the context of aging, the effects of the aerosol of Tobacco Heating System 2.2 (THS; an electrically heated tobacco product) and 3R4F reference cigarette smoke (CS) on processes that contribute to vascular pathomechanisms leading to CVD. Young and old human aortic smooth muscle cells (HAoSMC) were exposed to various concentrations of aqueous extracts (AE) from 3R4F CS [0.014-0.22 puffs/mL] or THS aerosol [0.11-1.76 puffs/mL] for 24 h. Key markers were measured by high-content imaging, transcriptomics profiling and multianalyte profiling. In our study, in vitro aging increased senescence, DNA damage, and inflammation and decreased proliferation in the HAoSMCs. At higher concentrations of 3R4F AE, young HAoSMCs behaved similarly to aged cells, while old HAoSMCs showed additional DNA damage and apoptosis effects. At 3R4F AE concentrations with the maximum effect, the THS AE showed no significant effect in young or old HAoSMCs. It required an approximately ten-fold higher concentration of THS AE to induce effects similar to those observed with 3R4F. These effects were independent of nicotine, which did not show a significant effect on HAoSMCs at any tested concentration. Our results show that 3R4F AE accelerates aging in young HAoSMCs and exacerbates the aging effect in old HAoSMCs in vitro, consistent with CS-related contributions to the risk of CVD. Relative to 3R4F AE, the THS AE showed a significantly reduced impact on HAoSMCs, suggesting its lower risk for vascular SMC-associated pathomechanisms leading to CVD.


Assuntos
Senilidade Prematura/etiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Aerossóis , Aorta/citologia , Aorta/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Senescência Celular , Dano ao DNA/efeitos dos fármacos , Humanos , Inflamação/etiologia , Miócitos de Músculo Liso/patologia , Fumar/efeitos adversos , Produtos do Tabaco
3.
Arch Toxicol ; 95(5): 1805-1829, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33963423

RESUMO

Cigarette smoking is the major cause of chronic obstructive pulmonary disease. Considerable attention has been paid to the reduced harm potential of nicotine-containing inhalable products such as electronic cigarettes (e-cigarettes). We investigated the effects of mainstream cigarette smoke (CS) and e-vapor aerosols (containing nicotine and flavor) generated by a capillary aerosol generator on emphysematous changes, lung function, and molecular alterations in the respiratory system of female Apoe-/- mice. Mice were exposed daily (3 h/day, 5 days/week) for 6 months to aerosols from three different e-vapor formulations-(1) carrier (propylene glycol and vegetable glycerol), (2) base (carrier and nicotine), or (3) test (base and flavor)-or to CS from 3R4F reference cigarettes. The CS and base/test aerosol concentrations were matched at 35 µg nicotine/L. CS exposure, but not e-vapor exposure, led to impairment of lung function (pressure-volume loop area, A and K parameters, quasi-static elastance and compliance) and caused marked lung inflammation and emphysematous changes, which were confirmed histopathologically and morphometrically. CS exposure caused lung transcriptome (activation of oxidative stress and inflammatory responses), lipidome, and proteome dysregulation and changes in DNA methylation; in contrast, these effects were substantially reduced in response to the e-vapor aerosol exposure. Compared with sham, aerosol exposure (carrier, base, and test) caused a slight impact on lung inflammation and epithelia irritation. Our results demonstrated that, in comparison with CS, e-vapor aerosols induced substantially lower biological and pathological changes in the respiratory tract associated with chronic inflammation and emphysema.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotiana/toxicidade , Fumaça , Aerossóis , Animais , Apolipoproteínas E/metabolismo , Feminino , Exposição por Inalação , Pulmão , Camundongos , Nicotina , Testes de Função Respiratória , Fumar , Produtos do Tabaco , Transcriptoma
4.
J Appl Toxicol ; 41(10): 1598-1619, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33825214

RESUMO

Cigarette smoking is one major modifiable risk factor in the development and progression of chronic obstructive pulmonary disease and cardiovascular disease. To characterize and compare cigarette smoke (CS)-induced disease endpoints after exposure in either whole-body (WB) or nose-only (NO) exposure systems, we exposed apolipoprotein E-deficient mice to filtered air (Sham) or to the same total particulate matter (TPM) concentration of mainstream smoke from 3R4F reference cigarettes in NO or WB exposure chambers (EC) for 2 months. At matching TPM concentrations, we observed similar concentrations of carbon monoxide, acetaldehyde, and acrolein, but higher concentrations of nicotine and formaldehyde in NOEC than in WBEC. In both exposure systems, CS exposure led to the expected adaptive changes in nasal epithelia, altered lung function, lung inflammation, and pronounced changes in the nasal epithelial transcriptome and lung proteome. Exposure in the NOEC caused generally more severe histopathological changes in the nasal epithelia and a higher stress response as indicated by body weight decrease and lower blood lymphocyte counts compared with WB exposed mice. Erythropoiesis, and increases in total plasma triglyceride levels and atherosclerotic plaque area were observed only in CS-exposed mice in the WBEC group but not in the NOEC group. Although the composition of CS in the breathing zone is not completely comparable in the two exposure systems, the CS-induced respiratory disease endpoints were largely confirmed in both systems, with a higher magnitude of severity after NO exposure. CS-accelerated atherosclerosis and other pro-atherosclerotic factors were only significant in WBEC.


Assuntos
Absorção Fisiológica , Apolipoproteínas/efeitos dos fármacos , Apolipoproteínas/metabolismo , Doenças Cardiovasculares/induzido quimicamente , Fumar Cigarros/efeitos adversos , Exposição por Inalação , Pneumopatias/induzido quimicamente , Fumaça/efeitos adversos , Animais , Doenças Cardiovasculares/fisiopatologia , Modelos Animais de Doenças , Pneumopatias/fisiopatologia , Masculino , Camundongos
5.
Am J Physiol Heart Circ Physiol ; 318(3): H604-H631, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31975625

RESUMO

Smoking cigarettes is harmful to the cardiovascular system. Considerable attention has been paid to the reduced harm potential of alternative nicotine-containing inhalable products such as e-cigarettes. We investigated the effects of E-vapor aerosols or cigarette smoke (CS) on atherosclerosis progression, cardiovascular function, and molecular changes in the heart and aorta of female apolipoprotein E-deficient (ApoE-/-) mice. The mice were exposed to aerosols from three different E-vapor formulations: 1) carrier (propylene glycol and vegetable glycerol), 2) base (carrier and nicotine), or 3) test (base and flavor) or to CS from 3R4F reference cigarettes for up to 6 mo. Concentrations of CS and base or test aerosols were matched at 35 µg nicotine/L. Exposure to CS, compared with sham-exposed fresh air controls, accelerated atherosclerotic plaque formation, whereas no such effect was seen for any of the three E-vapor aerosols. Molecular changes indicated disease mechanisms related to oxidative stress and inflammation in general, plus changes in calcium regulation, and altered cytoskeletal organization and microtubule dynamics in the left ventricle. While ejection fraction, fractional shortening, cardiac output, and isovolumic contraction time remained unchanged following E-vapor aerosols exposure, the nicotine-containing base and test aerosols caused an increase in isovolumic relaxation time similar to CS. A nicotine-related increase in pulse wave velocity and arterial stiffness was also observed, but it was significantly lower for base and test aerosols than for CS. These results demonstrate that in comparison with CS, E-vapor aerosols induce substantially lower biological responses associated with smoking-related cardiovascular diseases.NEW & NOTEWORTHY Analysis of key urinary oxidative stress markers and proinflammatory cytokines showed an absence of oxidative stress and inflammation in the animals exposed to E-vapor aerosols. Conversely, animals exposed to conventional cigarette smoke had high urinary levels of these markers. When compared with conventional cigarette smoke, E-vapor aerosols induced smaller atherosclerotic plaque surface area and volume. Systolic and diastolic cardiac function, as well as endothelial function, were further significantly less affected by electronic cigarette aerosols than conventional cigarette smoke. Molecular analysis demonstrated that E-vapor aerosols induce significantly smaller transcriptomic dysregulation in the heart and aorta compared with conventional cigarette smoke.


Assuntos
Aerossóis/toxicidade , Aterosclerose/etiologia , Doenças Cardiovasculares/etiologia , Vapor do Cigarro Eletrônico/toxicidade , Coração/efeitos dos fármacos , Fumaça/efeitos adversos , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Progressão da Doença , Feminino , Exposição por Inalação , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos
6.
Arch Toxicol ; 94(6): 2179-2206, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367274

RESUMO

The use of flavoring substances is an important element in the development of reduced-risk products for adult smokers to increase product acceptance and encourage switching from cigarettes. In a first step towards characterizing the sub-chronic inhalation toxicity of neat flavoring substances, a study was conducted using a mixture of the substances in a base solution of e-liquid, where the standard toxicological endpoints of the nebulized aerosols were supplemented with transcriptomics analysis. The flavor mixture was produced by grouping 178 flavors into 26 distinct chemical groups based on structural similarities and potential metabolic and biological effects. Flavoring substances predicted to show the highest toxicological effect from each group were selected as the flavor group representatives (FGR). Following Organization for Economic Cooperation and Development Testing Guideline 413, rats were exposed to three concentrations of the FGR mixture in an e-liquid composed of nicotine (23 µg/L), propylene glycol (1520 µg/L), and vegetable glycerin (1890 µg/L), while non-flavored and no-nicotine mixtures were included as references to identify potential additive or synergistic effects between nicotine and the flavoring substances. The results indicated that the inhalation of an e-liquid containing the mixture of FGRs caused very minimal local and systemic toxic effects. In particular, there were no remarkable clinical (in-life) observations in flavored e-liquid-exposed rats. The biological effects related to exposure to the mixture of neat FGRs were limited and mainly nicotine-mediated, including changes in hematological and blood chemistry parameters and organ weight. These results indicate no significant additive biological changes following inhalation exposure to the nebulized FGR mixture above the nicotine effects measured in this sub-chronic inhalation study. In a subsequent study, e-liquids with FGR mixtures will be aerosolized by thermal treatment and assessed for toxicity.


Assuntos
Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/toxicidade , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Vaping/efeitos adversos , Animais , Biomarcadores/sangue , Qualidade de Produtos para o Consumidor , Feminino , Exposição por Inalação , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Sprague-Dawley , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Medição de Risco , Fatores de Tempo , Testes de Toxicidade
7.
Arch Toxicol ; 93(11): 3229-3247, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31494692

RESUMO

We previously proposed a systems toxicology framework for in vitro assessment of e-liquids. The framework starts with the first layer aimed at screening the potential toxicity of e-liquids, followed by the second layer aimed at investigating the toxicity-related mechanism of e-liquids, and finally, the third layer aimed at evaluating the toxicity-related mechanism of the corresponding aerosols. In this work, we applied this framework to assess the impact of the e-liquid MESH Classic Tobacco and its aerosol compared with that of cigarette smoke (CS) from the 3R4F reference cigarette. In the first layer, we evaluated the cytotoxicity profile of the MESH Classic Tobacco e-liquid (containing humectants, nicotine, and flavors) and its Base e-liquid (containing humectant and nicotine only) in comparison with total particulate matter (TPM) of 3R4F CS using primary bronchial epithelial cell cultures. In the second layer, the same culture model was used to explore changes in specific markers using high-content screening assays to identify potential toxicity-related mechanisms induced by the MESH Classic Tobacco and Base e-liquids beyond cell viability in comparison with the 3R4F CS TPM-induced effects. Finally, in the third layer, we compared the impact of exposure to the MESH Classic Tobacco or Base aerosols with 3R4F CS using human organotypic air-liquid interface buccal and small airway epithelial cultures. The results showed that the cytotoxicity of the MESH Classic Tobacco liquid was similar to the Base liquid but lower than 3R4F CS TPM at comparable nicotine concentrations. Relative to 3R4F CS exposure, MESH Classic Tobacco aerosol exposure did not cause tissue damage and elicited lower changes in the mRNA, microRNA, and protein markers. In the context of tobacco harm reduction strategy, the framework is suitable to assess the potential-reduced impact of electronic cigarette aerosol relative to CS.


Assuntos
Aerossóis/toxicidade , Brônquios/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Produtos do Tabaco/toxicidade , Adenilato Quinase/metabolismo , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Proteoma/metabolismo , Testes de Toxicidade , Transcriptoma/efeitos dos fármacos
8.
Inhal Toxicol ; 30(13-14): 553-567, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30849254

RESUMO

We compared early biological changes in mice after inhalation exposures to cigarette smoke or e-vapor aerosols (MarkTen® cartridge with Carrier, Test-1, or Test-2 formulations; 4% nicotine). Female C57BL/6 mice were exposed to 3R4F cigarette smoke or e-vapor aerosols by nose-only inhalation for up to 4 hours/day, 5 days/week, for 3 weeks. The 3R4F and e-vapor exposures were set to match the target nose port aerosol nicotine concentration (∼41 µg/L). Only the 3R4F group showed postexposure clinical signs such as tremors and lethargy. At necropsy, the 3R4F group had significant increases in lung weight and changes in bronchoalveolar lavage parameters, as well as microscopic findings in the respiratory tract. The e-vapor groups had minimal microscopic changes, including squamous metaplasia in laryngeal epiglottis, and histiocytic infiltrates in the lung (Test-2 group only). The 3R4F group had a higher incidence and severity of microscopic findings compared to any e-vapor group. Transcriptomic analysis also showed that the 3R4F group had the highest number of differentially expressed genes compared to Sham Control. Among e-vapor groups, Test-2 group had more differentially expressed genes but the magnitude of gene expression-based network perturbations in all e-vapor groups was ∼94% less than the 3R4F group. On proteome analysis in the lung, differentially regulated proteins were detected in the 3R4F group only. In conclusion, 3-weeks of 3R4F exposure induced molecular and microscopic changes associated with smoking-related diseases in the respiratory tract, while e-vapor exposures showed substantially reduced biological activities.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Sistema Respiratório/efeitos dos fármacos , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Administração por Inalação , Aerossóis , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Carboxihemoglobina/análise , Feminino , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Testes de Função Respiratória , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia
9.
Chem Res Toxicol ; 29(8): 1252-69, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27404394

RESUMO

Cigarette smoke (CS) has been reported to increase predisposition to oral cancer and is also recognized as a risk factor for many conditions including periodontal diseases, gingivitis, and other benign mucosal disorders. Smoking cessation remains the most effective approach for minimizing the risk of smoking-related diseases. However, reduction of harmful constituents by heating rather than combusting tobacco, without modifying the amount of nicotine, is a promising new paradigm in harm reduction. In this study, we compared effects of exposure to aerosol derived from a candidate modified risk tobacco product, the tobacco heating system (THS) 2.2, with those of CS generated from the 3R4F reference cigarette. Human organotypic oral epithelial tissue cultures (EpiOral, MatTek Corporation) were exposed for 28 min to 3R4F CS or THS2.2 aerosol, both diluted with air to comparable nicotine concentrations (0.32 or 0.51 mg nicotine/L aerosol/CS for 3R4F and 0.31 or 0.46 mg/L for THS2.2). We also tested one higher concentration (1.09 mg/L) of THS2.2. A systems toxicology approach was employed combining cellular assays (i.e., cytotoxicity and cytochrome P450 activity assays), comprehensive molecular investigations of the buccal epithelial transcriptome (mRNA and miRNA) by means of computational network biology, measurements of secreted proinflammatory markers, and histopathological analysis. We observed that the impact of 3R4F CS was greater than THS2.2 aerosol in terms of cytotoxicity, morphological tissue alterations, and secretion of inflammatory mediators. Analysis of the transcriptomic changes in the exposed oral cultures revealed significant perturbations in various network models such as apoptosis, necroptosis, senescence, xenobiotic metabolism, oxidative stress, and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) signaling. The stress responses following THS2.2 aerosol exposure were markedly decreased, and the exposed cultures recovered more completely compared with those exposed to 3R4F CS.


Assuntos
Mucosa Bucal/efeitos dos fármacos , Nicotiana , Toxicologia , Exposição Ambiental , Humanos , MicroRNAs/metabolismo , Mucosa Bucal/citologia , Mucosa Bucal/metabolismo
10.
Chem Res Toxicol ; 29(1): 3-18, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26651182

RESUMO

Cigarette smoke increases the risk for respiratory and other diseases. Although smoking prevalence has declined over the years, millions of adults choose to continue to smoke. Modified risk tobacco products (MRTPs) are potentially valuable tools for adult smokers that are unwilling to quit their habit. Here, we investigated the biological impact of a candidate MRTP, the tobacco-heating system (THS) 2.2, compared to that of the 3R4F reference cigarette in normal primary human bronchial epithelial cells. Chemical characterization of the THS 2.2 aerosol showed reduced levels of harmful constituents compared to those of a combustible cigarette. Multiparametric indicators of cellular toxicity were measured via real-time cellular analysis and high-content screening. The study was complemented by a whole transcriptome analysis, followed by computational approaches to identify and quantify perturbed molecular pathways. Exposure of cells to 3R4F cigarette smoke resulted in a dose-dependent response in most toxicity end points. Moreover, we found a significant level of perturbation in multiple biological pathways, particularly in those related to cellular stress. By contrast, exposure to THS 2.2 resulted in an overall lower biological impact. At 3R4F doses, no toxic effects were observed. A toxic response was observed for THS 2.2 in some functional end points, but the responses occurred at doses between 3 and 15 times higher than those of 3R4F. The level of biological network perturbation was also significantly reduced following THS 2.2 aerosol exposure compared to that of 3R4F cigarette smoke. Taken together, the data suggest that THS 2.2 aerosol is less toxic than combustible cigarette smoke and thus may have the potential to reduce the risk for smoke-related diseases.


Assuntos
Fumaça/efeitos adversos , Produtos do Tabaco/toxicidade , Aerossóis/química , Brônquios/citologia , Brônquios/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Fatores de Risco
11.
Inhal Toxicol ; 28(5): 226-40, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27027324

RESUMO

The liver is one of the most important organs involved in elimination of xenobiotic and potentially toxic substances. Cigarette smoke (CS) contains more than 7000 chemicals, including those that exert biological effects and cause smoking-related diseases. Though CS is not directly hepatotoxic, a growing body of evidence suggests that it may exacerbate pre-existing chronic liver disease. In this study, we integrated toxicological endpoints with molecular measurements and computational analyses to investigate effects of exposures on the livers of Apoe(-/- )mice. Mice were exposed to 3R4F reference CS, to an aerosol from the Tobacco Heating System (THS) 2.2, a candidate modified risk tobacco product (MRTP) or to filtered air (Sham) for up to 8 months. THS2.2 takes advantage of a "heat-not-burn" technology that, by heating tobacco, avoids pyrogenesis and pyrosynthesis. After CS exposure for 2 months, some groups were either switched to the MRTP or filtered air. While no group showed clear signs of hepatotoxicity, integrative analysis of proteomics and transcriptomics data showed a CS-dependent impairment of specific biological networks. These networks included lipid and xenobiotic metabolism and iron homeostasis that likely contributed synergistically to exacerbating oxidative stress. In contrast, most proteomic and transcriptomic changes were lower in mice exposed to THS2.2 and in the cessation and switching groups compared to the CS group. Our findings elucidate the complex biological responses of the liver to CS exposure. Furthermore, they provide evidence that THS2.2 aerosol has reduced biological effects, as compared with CS, on the livers of Apoe(-/- )mice.


Assuntos
Fígado/efeitos dos fármacos , Nicotiana/toxicidade , Fumaça , Produtos do Tabaco/toxicidade , Animais , Apolipoproteínas E/genética , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Camundongos Knockout , Proteômica , Risco , Abandono do Hábito de Fumar
12.
Regul Toxicol Pharmacol ; 81 Suppl 2: S82-S92, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27866933

RESUMO

Modified-risk tobacco products (MRTP) are designed to reduce the individual risk of tobacco-related disease as well as population harm compared to smoking cigarettes. Experimental proof of their benefit needs to be provided at multiple levels in research fields. Here, we examined microRNA (miRNA) levels in the lungs of rats exposed to a candidate modified-risk tobacco product, the Tobacco Heating System 2.2 (THS2.2) in a 90-day OECD TG-413 inhalation study. Our aim was to assess the miRNA response to THS2.2 aerosol compared with the response to combustible cigarettes (CC) smoke from the reference cigarette 3R4F. CC smoke exposure, but not THS2.2 aerosol exposure, caused global miRNA downregulation, which may be explained by the interference of CC smoke constituents with the miRNA processing machinery. Upregulation of specific miRNA species, such as miR-146a/b and miR-182, indicated that they are causal elements in the inflammatory response in CC-exposed lungs, but they were reduced after THS2.2 aerosol exposure. Transforming transcriptomic data into protein activity based on corresponding downstream gene expression, we identified potential mechanisms for miR-146a/b and miR-182 that were activated by CC smoke but not by THS2.2 aerosol and possibly involved in the regulation of those miRNAs. The inclusion of miRNA profiling in systems toxicology approaches increases the mechanistic understanding of the complex exposure responses.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Redução do Dano , Temperatura Alta , Pulmão/efeitos dos fármacos , MicroRNAs/genética , Pneumonia/prevenção & controle , Fumar/efeitos adversos , Indústria do Tabaco , Produtos do Tabaco/toxicidade , Testes de Toxicidade/métodos , Aerossóis , Animais , Biologia Computacional , Qualidade de Produtos para o Consumidor , Desenho de Equipamento , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Genômica , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/metabolismo , Masculino , MicroRNAs/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/genética , Ratos Sprague-Dawley , Medição de Risco , Fumaça/efeitos adversos , Fumar/genética , Fatores de Tempo , Toxicogenética , Transcriptoma/efeitos dos fármacos
13.
Regul Toxicol Pharmacol ; 81 Suppl 2: S59-S81, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27793746

RESUMO

The objective of the study was to characterize the toxicity from sub-chronic inhalation of test atmospheres from the candidate modified risk tobacco product (MRTP), Tobacco Heating System version 2.2 (THS2.2), and to compare it with that of the 3R4F reference cigarette. A 90-day nose-only inhalation study on Sprague-Dawley rats was performed, combining classical and systems toxicology approaches. Reduction in respiratory minute volume, degree of lung inflammation, and histopathological findings in the respiratory tract organs were significantly less pronounced in THS2.2-exposed groups compared with 3R4F-exposed groups. Transcriptomics data obtained from nasal epithelium and lung parenchyma showed concentration-dependent differential gene expression following 3R4F exposure that was less pronounced in the THS2.2-exposed groups. Molecular network analysis showed that inflammatory processes were the most affected by 3R4F, while the extent of THS2.2 impact was much lower. Most other toxicological endpoints evaluated did not show exposure-related effects. Where findings were observed, the effects were similar in 3R4F- and THS2.2-exposed animals. In summary, toxicological changes observed in the respiratory tract organs of THS2.2 aerosol-exposed rats were much less pronounced than in 3R4F-exposed rats while other toxicological endpoints either showed no exposure-related effects or were comparable to what was observed in the 3R4F-exposed rats.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Redução do Dano , Temperatura Alta , Fumar/efeitos adversos , Indústria do Tabaco , Produtos do Tabaco/toxicidade , Testes de Toxicidade/métodos , Aerossóis , Animais , Biologia Computacional , Qualidade de Produtos para o Consumidor , Desenho de Equipamento , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genômica , Humanos , Exposição por Inalação/efeitos adversos , Masculino , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/fisiopatologia , Pneumonia/prevenção & controle , Ratos Sprague-Dawley , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/fisiopatologia , Medição de Risco , Fumaça/efeitos adversos , Fumar/genética , Biologia de Sistemas , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
14.
Regul Toxicol Pharmacol ; 81 Suppl 2: S123-S138, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27818347

RESUMO

Modified risk tobacco products (MRTPs) are being developed with the aim of reducing smoking-related health risks. The Tobacco Heating System 2.2 (THS2.2) is a candidate MRTP that uses the heat-not-burn principle. Here, systems toxicology approaches were engaged to assess the respiratory effects of mentholated THS2.2 (THS2.2M) in a 90-day rat inhalation study (OECD test guideline 413). The standard endpoints were complemented by transcriptomics and quantitative proteomics analyses of respiratory nasal epithelium and lung tissue and by lipidomics analysis of lung tissue. The adaptive response of the respiratory nasal epithelium to conventional cigarette smoke (CS) included squamous cell metaplasia and an inflammatory response, with high correspondence between the molecular and histopathological results. In contrast to CS exposure, the adaptive tissue and molecular changes to THS2.2M aerosol exposure were much weaker and were limited mostly to the highest THS2.2M concentration in female rats. In the lung, CS exposure induced an inflammatory response, triggered cellular stress responses, and affected sphingolipid metabolism. These responses were not observed or were much lower after THS2.2M aerosol exposure. Overall, this system toxicology analysis complements and reconfirms the results from classical toxicological endpoints and further suggests potentially reduced health risks of THS2.2M.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Redução do Dano , Temperatura Alta , Mentol/toxicidade , Fumaça/efeitos adversos , Fumar/efeitos adversos , Indústria do Tabaco , Produtos do Tabaco/toxicidade , Testes de Toxicidade/métodos , Aerossóis , Animais , Qualidade de Produtos para o Consumidor , Relação Dose-Resposta a Droga , Desenho de Equipamento , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Mentol/análise , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/patologia , Pneumonia/prevenção & controle , Proteômica , Ratos Sprague-Dawley , Medição de Risco , Fumaça/análise , Fumar/genética , Biologia de Sistemas , Fatores de Tempo , Produtos do Tabaco/análise , Toxicogenética , Transcriptoma/efeitos dos fármacos
15.
Toxicol Mech Methods ; 26(6): 389-413, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27117495

RESUMO

Various electronic nicotine delivery systems (ENDS), of which electronic cigarettes (e-cigs) are the most recognized prototype, have been quickly gaining ground on conventional cigarettes because they are perceived as less harmful. Research assessing the potential effects of ENDS exposure in humans is currently limited and inconclusive. New products are emerging with numerous variations in designs and performance parameters within and across brands. Acknowledging these challenges, we present here a proposed framework for an in vitro systems toxicology assessment of e-liquids and their aerosols, intended to complement the battery of assays for standard toxicity assessments. The proposed framework utilizes high-throughput toxicity assessments of e-liquids and their aerosols, in which the device-to-device variability is minimized, and a systems-level investigation of the cellular mechanisms of toxicity is an integral part. An analytical chemistry investigation is also included as a part of the framework to provide accurate and reliable chemistry data solidifying the toxicological assessment. In its simplest form, the framework comprises of three main layers: (1) high-throughput toxicity screening of e-liquids using primary human cell culture systems; (2) toxicity-related mechanistic assessment of selected e-liquids, and (3) toxicity-related mechanistic assessment of their aerosols using organotypic air-liquid interface airway culture systems. A systems toxicology assessment approach is leveraged to enable in-depth analyses of the toxicity-related cellular mechanisms of e-liquids and their aerosols. We present example use cases to demonstrate the suitability of the framework for a robust in vitro assessment of e-liquids and their aerosols.


Assuntos
Poluentes Atmosféricos/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Testes de Toxicidade/instrumentação , Testes de Toxicidade/métodos , Aerossóis , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Desenho de Equipamento , Ensaios de Triagem em Larga Escala , Humanos , Biologia de Sistemas , Volatilização
16.
Inflamm Res ; 64(7): 471-86, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25962837

RESUMO

BACKGROUND: Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal reasoning (RCR). OBJECTIVE: In the present study we applied a systems biology approach leveraging RCR to identify molecular mechanistic explanations of pathophysiological changes associated with CS-induced lung emphysema in susceptible mice. METHODS: The lung transcriptomes of five mouse models (C57BL/6, ApoE (-/-) , A/J, CD1, and Nrf2 (-/-) ) were analyzed following 5-7 months of CS exposure. RESULTS: We predicted 39 molecular changes mostly related to inflammatory processes including known key emphysema drivers such as NF-κB and TLR4 signaling, and increased levels of TNF-α, CSF2, and several interleukins. More importantly, RCR predicted potential molecular mechanisms that are less well-established, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1, and N-COR, and reduced protein abundance of ITGB6 and CFTR. We corroborated several predictions using targeted proteomic approaches, demonstrating increased abundance of CSF2, C/EBPα, C/EBPß, PU.1, BRCA1, and STAT1. CONCLUSION: These systems biology-derived candidate mechanisms common to susceptible mouse models may enhance understanding of CS-induced molecular processes underlying emphysema development in mice and their relevancy for human chronic obstructive pulmonary disease.


Assuntos
Nicotiana , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia , Fumaça , Animais , Apolipoproteínas E/genética , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Causalidade , Perfilação da Expressão Gênica , Exposição por Inalação , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Camundongos Knockout , Reação em Cadeia da Polimerase , Proteômica , Enfisema Pulmonar/induzido quimicamente , Fumar , Especificidade da Espécie
17.
Chem Res Toxicol ; 27(3): 367-76, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24428674

RESUMO

Exposure to cigarette smoke is a leading cause of lung diseases including chronic obstructive pulmonary disease and cancer. Cigarette smoke is a complex aerosol containing over 6000 chemicals and thus it is difficult to determine individual contributions to overall toxicity as well as the molecular mechanisms by which smoke constituents exert their effects. We selected three well-known harmful and potentially harmful constituents (HPHCs) in tobacco smoke, acrolein, formaldehyde and catechol, and established a high-content screening method using normal human bronchial epithelial cells, which are the first bronchial cells in contact with cigarette smoke. The impact of each HPHC was investigated using 13 indicators of cellular toxicity complemented with a microarray-based whole-transcriptome analysis followed by a computational approach leveraging mechanistic network models to identify and quantify perturbed molecular pathways. HPHCs were evaluated over a wide range of concentrations and at different exposure time points (4, 8, and 24 h). By high-content screening, the toxic effects of the three HPHCs could be observed only at the highest doses. Whole-genome transcriptomics unraveled toxicity mechanisms at lower doses and earlier time points. The most prevalent toxicity mechanisms observed were DNA damage/growth arrest, oxidative stress, mitochondrial stress, and apoptosis/necrosis. A combination of multiple toxicological end points with a systems-based impact assessment allows for a more robust scientific basis for the toxicological assessment of HPHCs, allowing insight into time- and dose-dependent molecular perturbations of specific biological pathways. This approach allowed us to establish an in vitro systems toxicology platform that can be applied to a broader selection of HPHCs and their mixtures and can serve more generally as the basis for testing the impact of other environmental toxicants on normal bronchial epithelial cells.


Assuntos
Fumaça , Acroleína/química , Acroleína/toxicidade , Apoptose/efeitos dos fármacos , Catecóis/química , Catecóis/toxicidade , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Formaldeído/química , Formaldeído/toxicidade , Perfilação da Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Sci Rep ; 14(1): 4286, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383592

RESUMO

Cigarette smoking is a major preventable cause of morbidity and mortality. While quitting smoking is the best option, switching from cigarettes to non-combustible alternatives (NCAs) such as e-vapor products is a viable harm reduction approach for smokers who would otherwise continue to smoke. A key challenge for the clinical assessment of NCAs is that self-reported product use can be unreliable, compromising the proper evaluation of their risk reduction potential. In this cross-sectional study of 205 healthy volunteers, we combined comprehensive exposure characterization with in-depth multi-omics profiling to compare effects across four study groups: cigarette smokers (CS), e-vapor users (EV), former smokers (FS), and never smokers (NS). Multi-omics analyses included metabolomics, transcriptomics, DNA methylomics, proteomics, and lipidomics. Comparison of the molecular effects between CS and NS recapitulated several previous observations, such as increased inflammatory markers in CS. Generally, FS and EV demonstrated intermediate molecular effects between the NS and CS groups. Stratification of the FS and EV by combustion exposure markers suggested that this position on the spectrum between CS and NS was partially driven by non-compliance/dual use. Overall, this study highlights the importance of in-depth exposure characterization before biological effect characterization for any NCA assessment study.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Expossoma , Abandono do Hábito de Fumar , Produtos do Tabaco , Vaping , Humanos , Estudos Transversais , Multiômica
19.
Front Neurosci ; 17: 1239009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719154

RESUMO

Introduction: Alpha-synuclein (α-Syn) aggregation, transmission, and contribution to neurotoxicity represent central mechanisms underlying Parkinson's disease. The plant alkaloid "nicotine" was reported to attenuate α-Syn aggregation in different models, but its precise mode of action remains unclear. Methods: In this study, we investigated the effect of 2-week chronic nicotine treatment on α-Syn aggregation, neuroinflammation, neurodegeneration, and motor deficits in D-line α-Syn transgenic mice. We also established a novel humanized neuronal model of α-Syn aggregation and toxicity based on treatment of dopaminergic neurons derived from human induced pluripotent stem cells (iPSC) with α-Syn preformed fibrils (PFF) and applied this model to investigate the effects of nicotine and other compounds and their modes of action. Results and discussion: Overall, our results showed that nicotine attenuated α-Syn-provoked neuropathology in both models. Moreover, when investigating the role of nicotinic acetylcholine receptor (nAChR) signaling in nicotine's neuroprotective effects in iPSC-derived dopaminergic neurons, we observed that while α4-specific antagonists reduced the nicotine-induced calcium response, α4 agonists (e.g., AZD1446 and anatabine) mediated similar neuroprotective responses against α-Syn PFF-provoked neurodegeneration. Our results show that nicotine attenuates α-Syn-provoked neuropathology in vivo and in a humanized neuronal model of synucleinopathy and that activation of α4ß2 nicotinic receptors might mediate these neuroprotective effects.

20.
Front Pharmacol ; 13: 1011184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467029

RESUMO

Anatabine, an alkaloid present in plants of the So lanaceae family (including tobacco and eggplant), has been shown to ameliorate chronic inflammatory conditions in mouse models, such as Alzheimer's disease, Hashimoto's thyroiditis, multiple sclerosis, and intestinal inflammation. However, the mechanisms of action of anatabine remain unclear. To understand the impact of anatabine on cellular systems and identify the molecular pathways that are perturbed, we designed a study to examine the concentration-dependent effects of anatabine on various cell types by using a systems pharmacology approach. The resulting dataset, consisting of measurements of various omics data types at different time points, was analyzed by using multiple computational techniques. To identify concentration-dependent activated pathways, we performed linear modeling followed by gene set enrichment. To predict the functional partners of anatabine and the involved pathways, we harnessed the LINCS L1000 dataset's wealth of information and implemented integer linear programming on directed graphs, respectively. Finally, we experimentally verified our key computational predictions. Using an appropriate luciferase reporter cell system, we were able to demonstrate that anatabine treatment results in NRF2 (nuclear factor-erythroid factor 2-related factor 2) translocation, and our systematic phosphoproteomic assays showed that anatabine treatment results in activation of MAPK signaling. While there are certain areas to be explored in deciphering the exact anti-inflammatory mechanisms of action of anatabine and other NRF2 activators, we believe that anatabine constitutes an interesting molecule for its therapeutic potential in NRF2-related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA