RESUMO
Anthropogenic climate change is altering precipitation regimes at a global scale. While precipitation changes have been linked to changes in the abundance and diversity of soil and litter invertebrate fauna in forests, general trends have remained elusive due to mixed results from primary studies. We used a meta-analysis based on 430 comparisons from 38 primary studies to address associated knowledge gaps, (i) quantifying impacts of precipitation change on forest soil and litter fauna abundance and diversity, (ii) exploring reasons for variation in impacts and (iii) examining biases affecting the realism and accuracy of experimental studies. Precipitation reductions led to a decrease of 39% in soil and litter fauna abundance, with a 35% increase in abundance under precipitation increases, while diversity impacts were smaller. A statistical model containing an interaction between body size and the magnitude of precipitation change showed that mesofauna (e.g. mites, collembola) responded most to changes in precipitation. Changes in taxonomic richness were related solely to the magnitude of precipitation change. Our results suggest that body size is related to the ability of a taxon to survive under drought conditions, or to benefit from high precipitation. We also found that most experiments manipulated precipitation in a way that aligns better with predicted extreme climatic events than with predicted average annual changes in precipitation and that the experimental plots used in experiments were likely too small to accurately capture changes for mobile taxa. The relationship between body size and response to precipitation found here has far-reaching implications for our ability to predict future responses of soil biodiversity to climate change and will help to produce more realistic mechanistic soil models which aim to simulate the responses of soils to global change.
Assuntos
Tamanho Corporal , Mudança Climática , Florestas , Chuva , Solo , Animais , Solo/química , Biodiversidade , Invertebrados/fisiologiaRESUMO
The use of cover crops (CCs) is a promising cropland management practice with multiple benefits, notably in reducing soil erosion and increasing soil organic carbon (SOC) storage. However, the current ability to represent these factors in land surface models remains limited to small scales or simplified and lumped approaches due to the lack of a sediment-carbon erosion displacement scheme. This precludes a thorough understanding of the consequences of introducing a CC into agricultural systems. In this work, this problem was addressed in two steps with the spatially distributed CE-DYNAM model. First, the historical effect of soil erosion, transport, and deposition on the soil carbon budget at a continental scale in Europe was characterized since the early industrial era, using reconstructed climate and land use forcings. Then, the impact of two distinct policy-oriented scenarios for the introduction of CCs were evaluated, covering the European cropping systems where surface erosion rates or nitrate susceptibility are critical. The evaluation focused on the increase in SOC storage and the export of particulate organic carbon (POC) to the oceans, compiling a continental-scale carbon budget. The results indicated that Europe exported 1.95 TgC/year of POC to the oceans in the last decade, and that CCs can contribute to reducing this amount while increasing SOC storage. Compared to the simulation without CCs, the additional rate of SOC storage induced by CCs peaked after 10 years of their adoption, followed by a decrease, and the cumulative POC export reduction stabilized after around 13 years. The findings indicate that the impacts of CCs on SOC and reduced POC export are persistent regardless of their spatial allocation adopted in the scenarios. Together, the results highlight the importance of taking the temporal aspect of CC adoption into account and indicate that CCs alone are not sufficient to meet the targets of the 4 initiative. Despite some known model limitations, which include the lack of feedback of erosion on the net primary productivity and the representation of carbon fluxes with an emulator, the current work constitutes the first approach to successfully couple a distributed routing scheme of eroded carbon to a land carbon model emulator at a reasonably high resolution and continental scale. SHORT ABSTRACT: A spatially distributed model coupling erosion, transport, and deposition to the carbon cycle was developed. Then, it was used to simulate the impact of cover crops on both erosion and carbon, to show that cover crops can simultaneously increase organic carbon storage and reduce particulate organic carbon export to the oceans. The results seemed persistent regardless of the spatial distribution of cover crops.
Assuntos
Carbono , Solo , Conservação dos Recursos Naturais , Agricultura/métodos , Ciclo do Carbono , Poeira , Produtos AgrícolasRESUMO
Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw-related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to investigate changes in CO2 and CH4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m-2 year-1 ; including 6 ± 7 g C-CH4 m-2 year-1 emission). We found, however, that lowering the WT by 10 cm reduced the CO2 sink by 13 ± 15 g C m-2 year-1 and decreased CH4 emission by 4 ± 4 g CH4 m-2 year-1 , thus accumulating less C over 100 years (0.2 ± 0.2 kg C m-2 ). Yet, the reduced emission of CH4 , which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO2-eq m-2 year-1 . Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non-permafrost peatlands lost >2 kg C m-2 over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH4 emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario.
Assuntos
Gases de Efeito Estufa , Água Subterrânea , Carbono , Dióxido de Carbono/análise , Sequestro de Carbono , Ecossistema , Gases de Efeito Estufa/análise , Metano/análise , SoloRESUMO
Given the prospects of low short-term emissions reduction, carbon removals (CDRs) are expected to play an important role in achieving ambitious mitigation targets in future scenarios of integrated assessment models (IAMs), particularly Bioenergy with Carbon Capture and Storage (BECCS). In this paper, we explore the IAMC 1.5â database to depict the characteristics of the two main CDR options present in mitigation scenarios: BECCS and afforestation/reforestation. We apply a linear mixed-effect model to capture the specific regional and cross-IAM effects. Results reveal that the distribution of BECCS and afforestation deployment differs across IAMs and regions and, to a second extent, time. BECCS is preferred in the scenarios not for its ability to expand energy use but actually because it appears as an alternative to afforestation, which is associated with a decrease in energy use. However, the regional distribution of CDR deployment does not show a common pattern across scenarios and IAMs. Therefore, a more comprehensive investigation is needed before it can support policy proposals.
Assuntos
Sequestro de Carbono , Carbono , BiomassaRESUMO
Increasing soil organic carbon (SOC) stocks is a promising way to mitigate the increase in atmospheric CO2 concentration. Based on a simple ratio between CO2 anthropogenic emissions and SOC stocks worldwide, it has been suggested that a 0.4% (4 per 1000) yearly increase in SOC stocks could compensate for current anthropogenic CO2 emissions. Here, we used a reverse RothC modelling approach to estimate the amount of C inputs to soils required to sustain current SOC stocks and to increase them by 4 per year over a period of 30 years. We assessed the feasibility of this aspirational target first by comparing the required C input with net primary productivity (NPP) flowing to the soil, and second by considering the SOC saturation concept. Calculations were performed for mainland France, at a 1 km grid cell resolution. Results showed that a 30%-40% increase in C inputs to soil would be needed to obtain a 4 increase per year over a 30-year period. 88.4% of cropland areas were considered unsaturated in terms of mineral-associated SOC, but characterized by a below target C balance, that is, less NPP available than required to reach the 4 aspirational target. Conversely, 90.4% of unimproved grasslands were characterized by an above target C balance, that is, enough NPP to reach the 4 objective, but 59.1% were also saturated. The situation of improved grasslands and forests was more evenly distributed among the four categories (saturated vs. unsaturated and above vs below target C balance). Future data from soil monitoring networks should enable to validate these results. Overall, our results suggest that, for mainland France, priorities should be (1) to increase NPP returns in cropland soils that are unsaturated and have a below target carbon balance and (2) to preserve SOC stocks in other land uses.
Assuntos
Carbono , Solo , Carbono/análise , Sequestro de Carbono , Estudos de Viabilidade , FrançaRESUMO
To respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, and possibly below 1.5°C, drastic reductions of greenhouse gas emissions are mandatory but not sufficient. Large-scale deployment of other climate mitigation strategies is also necessary. Among these, increasing soil organic carbon (SOC) stocks is an important lever because carbon in soils can be stored for long periods and land management options to achieve this already exist and have been widely tested. However, agricultural soils are also an important source of nitrous oxide (N2 O), a powerful greenhouse gas, and increasing SOC may influence N2 O emissions, likely causing an increase in many cases, thus tending to offset the climate change benefit from increased SOC storage. Here we review the main agricultural management options for increasing SOC stocks. We evaluate the amount of SOC that can be stored as well as resulting changes in N2 O emissions to better estimate the climate benefits of these management options. Based on quantitative data obtained from published meta-analyses and from our current level of understanding, we conclude that the climate mitigation induced by increased SOC storage is generally overestimated if associated N2 O emissions are not considered but, with the exception of reduced tillage, is never fully offset. Some options (e.g. biochar or non-pyrogenic C amendment application) may even decrease N2 O emissions.
Assuntos
Gases de Efeito Estufa , Solo , Agricultura , Carbono/análise , Óxido Nitroso/análise , ParisRESUMO
Simulation models represent soil organic carbon (SOC) dynamics in global carbon (C) cycle scenarios to support climate-change studies. It is imperative to increase confidence in long-term predictions of SOC dynamics by reducing the uncertainty in model estimates. We evaluated SOC simulated from an ensemble of 26 process-based C models by comparing simulations to experimental data from seven long-term bare-fallow (vegetation-free) plots at six sites: Denmark (two sites), France, Russia, Sweden and the United Kingdom. The decay of SOC in these plots has been monitored for decades since the last inputs of plant material, providing the opportunity to test decomposition without the continuous input of new organic material. The models were run independently over multi-year simulation periods (from 28 to 80 years) in a blind test with no calibration (Bln) and with the following three calibration scenarios, each providing different levels of information and/or allowing different levels of model fitting: (a) calibrating decomposition parameters separately at each experimental site (Spe); (b) using a generic, knowledge-based, parameterization applicable in the Central European region (Gen); and (c) using a combination of both (a) and (b) strategies (Mix). We addressed uncertainties from different modelling approaches with or without spin-up initialization of SOC. Changes in the multi-model median (MMM) of SOC were used as descriptors of the ensemble performance. On average across sites, Gen proved adequate in describing changes in SOC, with MMM equal to average SOC (and standard deviation) of 39.2 (±15.5) Mg C/ha compared to the observed mean of 36.0 (±19.7) Mg C/ha (last observed year), indicating sufficiently reliable SOC estimates. Moving to Mix (37.5 ± 16.7 Mg C/ha) and Spe (36.8 ± 19.8 Mg C/ha) provided only marginal gains in accuracy, but modellers would need to apply more knowledge and a greater calibration effort than in Gen, thereby limiting the wider applicability of models.
Assuntos
Carbono , Solo , Agricultura , Carbono/análise , França , Federação Russa , Suécia , Incerteza , Reino UnidoRESUMO
The leaching of dissolved organic carbon (DOC) from soils to the river network is an overlooked component of the terrestrial soil C budget. Measurements of DOC concentrations in soil, runoff and drainage are scarce and their spatial distribution highly skewed towards industrialized countries. The contribution of terrestrial DOC leaching to the global-scale C balance of terrestrial ecosystems thus remains poorly constrained. Here, using a process based, integrative, modelling approach to upscale from existing observations, we estimate a global terrestrial DOC leaching flux of 0.28 ± 0.07 Gt C year-1 which is conservative, as it only includes the contribution of mineral soils. Our results suggest that globally about 15% of the terrestrial Net Ecosystem Productivity (NEP, calculated as the difference between Net Primary Production and soil respiration) is exported to aquatic systems as leached DOC. In the tropical rainforest, the leached fraction of terrestrial NEP even reaches 22%. Furthermore, we simulated spatial-temporal trends in DOC leaching from soil to the river networks from 1860 to 2010. We estimated a global increase in terrestrial DOC inputs to river network of 35 Tg C year-1 (14%) from 1860 to 2010. Despite their low global contribution to the DOC leaching flux, boreal regions have the highest relative increase (28%) while tropics have the lowest relative increase (9%) over the historical period (1860s compared to 2000s). The results from our observationally constrained model approach demonstrate that DOC leaching is a significant flux in the terrestrial C budget at regional and global scales.
RESUMO
First-order organic matter decomposition models are used within most Earth System Models (ESMs) to project future global carbon cycling; these models have been criticized for not accurately representing mechanisms of soil organic carbon (SOC) stabilization and SOC response to climate change. New soil biogeochemical models have been developed, but their evaluation is limited to observations from laboratory incubations or few field experiments. Given the global scope of ESMs, a comprehensive evaluation of such models is essential using in situ observations of a wide range of SOC stocks over large spatial scales before their introduction to ESMs. In this study, we collected a set of in situ observations of SOC, litterfall and soil properties from 206 sites covering different forest and soil types in Europe and China. These data were used to calibrate the model MIMICS (The MIcrobial-MIneral Carbon Stabilization model), which we compared to the widely used first-order model CENTURY. We show that, compared to CENTURY, MIMICS more accurately estimates forest SOC concentrations and the sensitivities of SOC to variation in soil temperature, clay content and litter input. The ratios of microbial biomass to total SOC predicted by MIMICS agree well with independent observations from globally distributed forest sites. By testing different hypotheses regarding (using alternative process representations) the physicochemical constraints on SOC deprotection and microbial turnover in MIMICS, the errors of simulated SOC concentrations across sites were further decreased. We show that MIMICS can resolve the dominant mechanisms of SOC decomposition and stabilization and that it can be a reliable tool for predictions of terrestrial SOC dynamics under future climate change. It also allows us to evaluate at large scale the rapidly evolving understanding of SOC formation and stabilization based on laboratory and limited filed observation.
RESUMO
Fresh carbon input (above and belowground) contributes to soil carbon sequestration, but also accelerates decomposition of soil organic matter through biological priming mechanisms. Currently, poor understanding precludes the incorporation of these priming mechanisms into the global carbon models used for future projections. Here, we show that priming can be incorporated based on a simple equation calibrated from incubation and verified against independent litter manipulation experiments in the global land surface model, ORCHIDEE. When incorporated into ORCHIDEE, priming improved the model's representation of global soil carbon stocks and decreased soil carbon sequestration by 51% (12 ± 3 Pg C) during the period 1901-2010. Future projections with the same model across the range of CO2 and climate changes defined by the IPCC-RCP scenarios reveal that priming buffers the projected changes in soil carbon stocks - both the increases due to enhanced productivity and new input to the soil, and the decreases due to warming-induced accelerated decomposition. Including priming in Earth system models leads to different projections of soil carbon changes, which are challenging to verify at large spatial scales.
Assuntos
Carbono/química , Solo/química , Ciclo do Carbono , Dióxido de Carbono , Sequestro de Carbono , Mudança Climática , Planeta TerraRESUMO
The net flux of CO2 exchanged with the atmosphere following grassland-related land-use change (LUC) depends on the subsequent temporal dynamics of soil organic carbon (SOC). Yet, the magnitude and timing of these dynamics are still unclear. We compiled a global data set of 836 paired-sites to quantify temporal SOC changes after grassland-related LUC. In order to discriminate between SOC losses from the initial ecosystem and gains from the secondary one, the post-LUC time series of SOC data was combined with satellite-based net primary production observations as a proxy of carbon input to the soil. Globally, land conversion from either cropland or forest into grassland leads to SOC accumulation; the reverse shows net SOC loss. The SOC response curves vary between different regions. Conversion of cropland to managed grassland results in more SOC accumulation than natural grassland recovery from abandoned cropland. We did not consider the biophysical variables (e.g., climate conditions and soil properties) when fitting the SOC turnover rate into the observation data but analyzed the relationships between the fitted turnover rate and these variables. The SOC turnover rate is significantly correlated with temperature and precipitation (p < 0.05), but not with the clay fraction of soils (p > 0.05). Comparing our results with predictions from bookkeeping models, we found that bookkeeping models overestimate by 56% of the long-term (100 years horizon) cumulative SOC emissions for grassland-related LUC types in tropical and temperate regions since 2000. We also tested the spatial representativeness of our data set and calculated SOC response curves using the representative subset of sites in each region. Our study provides new insight into the impact grassland-related LUC on the global carbon budget and sheds light on the potential of grassland conservation for climate mitigation.
Assuntos
Carbono/análise , Pradaria , Solo/química , Agricultura , Sequestro de Carbono , China , Clima , Ecossistema , FlorestasRESUMO
Spatial patterns and temporal trends of nitrogen (N) and phosphorus (P) deposition are important for quantifying their impact on forest carbon (C) uptake. In a first step, we modeled historical and future change in the global distributions of the atmospheric deposition of N and P from the dry and wet deposition of aerosols and gases containing N and P. Future projections were compared between two scenarios with contrasting aerosol emissions. Modeled fields of N and P deposition and P concentration were evaluated using globally distributed in situ measurements. N deposition peaked around 1990 in European forests and around 2010 in East Asian forests, and both increased sevenfold relative to 1850. P deposition peaked around 2010 in South Asian forests and increased 3.5-fold relative to 1850. In a second step, we estimated the change in C storage in forests due to the fertilization by deposited N and P (∆Cν dep ), based on the retention of deposited nutrients, their allocation within plants, and C:N and C:P stoichiometry. ∆Cν dep for 1997-2013 was estimated to be 0.27 ± 0.13 Pg C year-1 from N and 0.054 ± 0.10 Pg C year-1 from P, contributing 9% and 2% of the terrestrial C sink, respectively. Sensitivity tests show that uncertainty of ∆Cν dep was larger from P than from N, mainly due to uncertainty in the fraction of deposited P that is fixed by soil. ∆CPdep was exceeded by ∆CNdep over 1960-2007 in a large area of East Asian and West European forests due to a faster growth in N deposition than P. Our results suggest a significant contribution of anthropogenic P deposition to C storage, and additional sources of N are needed to support C storage by P in some Asian tropical forests where the deposition rate increased even faster for P than for N.
Assuntos
Sequestro de Carbono , Florestas , Nitrogênio/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Modelos Biológicos , Estações do Ano , Fatores de TempoRESUMO
Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO2 (eCO2 ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO2 Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (Amax ) and light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R2 = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year GPP by warming (29%, P = 0.02) and eCO2 (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tairant ) and vapor pressure deficit (VPDant ) effects on Amax (over the past 3-4 days and 1-3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPDant suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO2 treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest that they could be useful semi-independent data streams for validating TBMs.
Assuntos
Ciclo do Carbono , Ecossistema , Pradaria , Dióxido de Carbono , Clima , WyomingRESUMO
Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global data sets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analysed both the labile inorganic P (PILAB ), a proxy of the pool involved in plant nutrition and the total soil P (PTOT ). We found that the soil biogeochemical background corresponding to P inherited from natural soils at the conversion to agriculture (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between PTOT vs. PILAB . When the spatial variability was computed between grid cells at half-degree resolution, we found that almost all of the PTOT spatial variability could be explained by BIOG, while BIOG and FARM explained 38% and 63% of PILAB spatial variability, respectively. Our work also showed that the driver contribution was sensitive to the spatial scale characterizing the variability (grid cell vs. continent) and to the region of interest (global vs. tropics for instance). In particular, the heterogeneity of farming practices between continents was large enough to make FARM contribute to the variability in PTOT at that scale. We thus demonstrated how the different drivers were combined to explain the global distribution of agricultural soil P. Our study is also a promising approach to investigate the potential effect of P as a limiting factor for agroecosystems at the global scale.
Assuntos
Agricultura , Fósforo/química , Solo/química , Produtos Agrícolas , PlantasRESUMO
Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single-factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m-2 yr-1 ). Comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the N cycle models, N availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO2 -induced water savings to extend the growing season length. Observed interactive (CO2 × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.
Assuntos
Pradaria , Calefação , Poaceae/crescimento & desenvolvimento , Dióxido de Carbono , Solo , WyomingRESUMO
Increasing soil organic carbon (SOC) stocks in agricultural systems is a pivotal strategy for promoting soil health and mitigating climate change. Global initiatives have set ambitious targets, aspiring to achieve an annual SOC stock increase of 4 . In the European Union, the recently approved Nature Restoration Law aims to increase SOC stock trends in the top 30 cm of cropland mineral soils. However, current monitoring and reporting practices in some countries rely on simplistic SOC models with default parameters, which may not provide reliable predictions. In this paper, we study the feasibility of a 4 target in European croplands (i.e., an aspirational target proposed by The international "4 per 1000" Initiative), through estimations of required C input changes. To ensure robust predictions, we propose a novel calibration approach that links model parameters to pedo-climatic variables via statistical relationships from 16 long-term experiments. The effectiveness of the method is evaluated for three SOC models across 4281 sites from the European LUCAS soil survey. Our findings demonstrate that the statistical calibration of the multi-model ensemble improves the accuracy of 2015 and 2018 SOC stock predictions, compared to default parameterization. This improvement was however mainly due to the substantial enhancement of one of the models. According to the weighted multi-model mean, median C input changes to reach a 4 target for Northern, Central, and Southern Europe stand at 1.85, 1.20, and 0.13 Mg C ha-1 yr-1 under RCP 2.6, and 2.21, 1.26, and -0.10 Mg C ha-1 yr-1 under RCP 6.0, respectively. To achieve the aspirational 4 target, estimated C input change requirements exceed the predicted changes in net primary productivity under RCP 2.6 and RCP 6.0. This emphasizes the importance of strategic land-use and land-management interventions to enhance SOC stocks.
RESUMO
The soil carbon-climate feedback is currently the least constrained component of global warming projections, and the major source of uncertainties stems from a poor understanding of soil carbon turnover processes. Here, we assemble data from long-term temperature-controlled soil incubation studies to show that the arctic and boreal region has the shortest intrinsic soil carbon turnover time while tropical forests have the longest one, and current Earth system models overestimate intrinsic turnover time by 30 percent across active, slow and passive carbon pools. Our constraint suggests that the global soils will switch from carbon sink to source, with a loss of 0.22-0.53 petagrams of carbon per year until the end of this century from strong mitigation to worst emission scenarios, suggesting that global soils will provide a strong positive carbon feedback on warming. Such a reversal of global soil carbon balance would lead to a reduction of 66% and 15% in the current estimated remaining carbon budget for limiting global warming well below 1.5 °C and 2 °C, respectively, rendering climate mitigation much more difficult.
RESUMO
Soil contamination by trace elements like copper (Cu) can affect soil functioning. Environmental policies with guidelines and soil survey measurements still refer to the total content of Cu in soils. However, Cu content in soil solution or free Cu content have been shown to be better proxies of risks of Cu mobility or (bio-)availability for soil organisms. Several empirical equations have been defined at the local scale to predict the amount of Cu in soil solution based on both total soil Cu content and main soil parameters involved in the soil/solution partitioning. Nevertheless, despite the relevance for risk assessment, these equations are not applied at a large spatial scale due to difficulties to perform changes from local to regional. To progress in this challenge, we collected several empirical equations from literature and selected those allowing estimation of the amount of Cu in solution, used as a proxy of available Cu, from the knowledge of both total soil Cu content and soil parameters. We did the same for the estimation of free Cu in solution, used as a proxy of bio-available Cu. These equations were used to provide European maps of (bio-)available Cu based on the one of total soil Cu over Europe. Results allowed comparing the maps of available and bio-available Cu at the European scale. This was done with respective median values of each form of Cu to identify specific areas of risks linked to these two proxies. Higher discrepancies were highlighted between the map of bio-available Cu and the map of soil total Cu compared to the Cu available map. Such results can be used to assess environmental-related issues for land use planning.
Assuntos
Metais Pesados , Poluentes do Solo , Cobre/análise , Solo , Metais Pesados/análise , Monitoramento Ambiental/métodos , Poluentes do Solo/análiseRESUMO
Some steps of the soil nitrogen (N) cycle are sensitive to environmental pressures like soil moisture or contamination, which are expected to evolve during the next decades. Individual stresses have been well studied, but their combination is not yet documented. In this work, we aimed at assessing the importance of the soil moisture on the impact of copper (Cu) contaminations on the N cycling soil function using the potential nitrification activities (PNA) as bioindicator. A two-step experiment was performed. First, a loamy soil was incubated 5 weeks in either 30, 60, or 90% of its water holding capacity (WHC) or alternating drought and rewetting periods. Thereafter, soil samples were exposed to a gradient of Cu concentrations through a bioassay involving nitrification. The dose-response curves of PNA in function of added Cu were modeled to calculate the effective Cu concentrations, namely ECx with x being the percentage of PNA inhibition. These values were then compared between experimental conditions to highlight differences in threshold values. The preincubation moisture treatments significantly affected the PNA responses to the secondary Cu stress with, for instance, hormetic responses in all cases except for the dry-rewetting treatment. Small PNA inhibitions were estimated for high Cu doses in the soils with low water contents (30% WHC) or submitted to dry-rewetting cycles, contrarily to the patterns observed for the soils with high water contents (90% WHC) or submitted to a single period of drought. Overall, significant differences were found in estimated ECx values between moisture treatments.
Assuntos
Nitrificação , Solo , Cobre , Microbiologia do Solo , Água/análiseRESUMO
When a peatland is drained and cultivated, it behaves as a notable source of CO2 However, we lack temporally and spatially explicit estimates of carbon losses from cultivated peatlands. Using a process-based land surface model that explicitly includes representation of peatland processes, we estimate that northern peatlands converted to croplands emitted 72 Pg C over 850-2010, with 45% of this source having occurred before 1750. This source surpassed the carbon accumulation by high-latitude undisturbed peatlands (36 to 47 Pg C). Carbon losses from the cultivation of northern peatlands are omitted in previous land-use emission assessments. Adding this ignored historical land-use emission implies an 18% larger terrestrial carbon storage since 1750 to close the historical global carbon budget. We also show that carbon emission per unit area decrease with time since drainage, suggesting that time since drainage should be accounted for in inventories to refine land-use emissions from cultivated peatlands.