Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113888, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416644

RESUMO

Higher-order genome structure influences the transcriptional regulation of cellular genes through the juxtaposition of regulatory elements, such as enhancers, close to promoters of target genes. While enhancer activation has emerged as an important facet of Kaposi sarcoma-associated herpesvirus (KSHV) biology, the mechanisms controlling enhancer-target gene expression remain obscure. Here, we discover that the KSHV genome tethering protein latency-associated nuclear antigen (LANA) potentiates enhancer-target gene expression in primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma causally associated with KSHV. Genome-wide analyses demonstrate increased levels of enhancer RNA transcription as well as activating chromatin marks at LANA-bound enhancers. 3D genome conformation analyses identified genes critical for latency and tumorigenesis as targets of LANA-occupied enhancers, and LANA depletion results in their downregulation. These findings reveal a mechanism in enhancer-gene coordination and describe a role through which the main KSHV tethering protein regulates essential gene expression in PEL.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Estudo de Associação Genômica Ampla , Antígenos Virais/genética , Antígenos Virais/metabolismo , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica , Latência Viral
2.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895266

RESUMO

Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1). While TSC neurological phenotypes are well-documented, it is not yet known how early in neural development TSC1/2-mutant cells diverge from the typical developmental trajectory. Another outstanding question is the contribution of homozygous-mutant cells to disease phenotypes and whether such phenotypes are also seen in the heterozygous-mutant populations that comprise the vast majority of cells in patients. Using TSC patient-derived isogenic induced pluripotent stem cells (iPSCs) with defined genetic changes, we observed aberrant early neurodevelopment in vitro, including misexpression of key proteins associated with lineage commitment and premature electrical activity. These alterations in differentiation were coincident with hundreds of differentially methylated DNA regions, including loci associated with key genes in neurodevelopment. Collectively, these data suggest that mutation or loss of TSC2 affects gene regulation and expression at earlier timepoints than previously appreciated, with implications for whether and how prenatal treatment should be pursued.

3.
bioRxiv ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39253426

RESUMO

Epigenetic mechanisms govern the transcriptional activity of lineage-specifying enhancers; but recent work challenges the dogma that joint chromatin accessibility and DNA demethylation are prerequisites for transcription. To understand this paradox, we established a highly-resolved timeline of DNA demethylation, chromatin accessibility, and transcription factor occupancy during neural progenitor cell differentiation. We show thousands of enhancers undergo rapid, transient accessibility changes associated with distinct periods of transcription factor expression. However, most DNA methylation changes are unidirectional and delayed relative to chromatin dynamics, creating transiently discordant epigenetic states. Genome-wide detection of 5-hydroxymethylcytosine further revealed active demethylation begins ahead of chromatin and transcription factor activity, while enhancer hypomethylation persists long after these activities have dissipated. We demonstrate that these timepoint specific methylation states predict past, present and future chromatin accessibility using machine learning models. Thus, chromatin and DNA methylation collaborate on different timescales to mediate short and long-term enhancer regulation during cell fate specification.

4.
J Immunother Cancer ; 11(11)2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-38315170

RESUMO

BACKGROUND: Despite the remarkable success of immunotherapy in treating melanoma, understanding of the underlying mechanisms of resistance remains limited. Emerging evidence suggests that upregulation of tumor-specific major histocompatibility complex-II (tsMHC-II) serves as a predictive marker for the response to anti-programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1) therapy in various cancer types. The genetic and epigenetic pathways modulating tsMHC-II expression remain incompletely characterized. Here, we provide evidence that polycomb repressive complex 2 (PRC2)/EZH2 signaling and resulting H3K27 hypermethylation suppresses tsMHC-II. METHODS: RNA sequencing data from tumor biopsies from patients with cutaneous melanoma treated with or without anti-PD-1, targeted inhibition assays, and assays for transposase-accessible chromatin with sequencing were used to observe the relationship between EZH2 inhibition and interferon (IFN)-γ inducibility within the MHC-II pathway. RESULTS: We find that increased EZH2 pathway messenger RNA (mRNA) expression correlates with reduced mRNA expression of both presentation and T-cell genes. Notably, targeted inhibition assays revealed that inhibition of EZH2 influences the expression dynamics and inducibility of the MHC-II pathway following IFN-γ stimulation. Additionally, our analysis of patients with metastatic melanoma revealed a significant inverse association between PRC2-related gene expression and response to anti-PD-1 therapy. CONCLUSIONS: Collectively, our findings demonstrate that EZH2 inhibition leads to enhanced MHC-II expression potentially resulting from improved chromatin accessibility at CIITA, the master regulator of MHC-II. These insights shed light on the molecular mechanisms involved in tsMHC-II suppression and highlight the potential of targeting EZH2 as a therapeutic strategy to improve immunotherapy efficacy.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Interferons/farmacologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Antígenos de Histocompatibilidade , Cromatina , RNA Mensageiro/genética
5.
Cell Stem Cell ; 29(1): 116-130.e7, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995493

RESUMO

Down syndrome (DS) is a genetic disorder driven by the triplication of chromosome 21 (T21) and characterized by a wide range of neurodevelopmental and physical disabilities. Transcriptomic analysis of tissue samples from individuals with DS has revealed that T21 induces a genome-wide transcriptional disruption. However, the consequences of T21 on the nuclear architecture and its interplay with the transcriptome remain unknown. In this study, we find that unlike human induced pluripotent stem cells (iPSCs), iPSC-derived neural progenitor cells (NPCs) exhibit genome-wide "chromosomal introversion," disruption of lamina-associated domains, and global chromatin accessibility changes in response to T21, consistent with the transcriptional and nuclear architecture changes characteristic of senescent cells. Treatment of T21-harboring NPCs with senolytic drugs alleviates the transcriptional, molecular, and cellular dysfunctions associated with DS. Our findings provide a mechanistic link between T21 and global transcriptional disruption and indicate that senescence-associated phenotypes may play a key role in the neurodevelopmental pathogenesis of DS.


Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Perfilação da Expressão Gênica , Humanos , Transcriptoma/genética
6.
Nat Protoc ; 16(12): 5377-5397, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663963

RESUMO

The epigenome is multidimensional, with individual molecular components operating on different levels to control transcriptional output. Techniques that combine measurements of these features can reveal their precise correspondence in genomic space, or temporal connectivity, to better understand how they jointly regulate genes. ATAC-Me is an integrated method to probe DNA methylation and chromatin accessibility from a single DNA fragment library. Intact nuclei undergo Tn5 transposition to isolate DNA fragments within nucleosome-free regions. Isolated fragments are exposed to sodium bisulfite before library amplification and sequencing. A typical ATAC-Me experiment detects ~60,000-75,000 peak regions (P < 0.05), covering ~3-4 million CpG sites with at least 5× coverage. These sites display a range of methylation values depending on the cellular and genomic context. The approach is well suited for time course studies that aim to capture chromatin and DNA methylation dynamics in tandem during cellular differentiation. The protocol is completed in 2 d with standard molecular biology equipment and expertise. Analysis of resulting data uses publicly available software requiring basic bioinformatics skills to interpret results.


Assuntos
Bioensaio , Cromatina/metabolismo , Biologia Computacional/métodos , Metilação de DNA , DNA/metabolismo , Epigênese Genética , Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/química , Ilhas de CpG , DNA/genética , Elementos de DNA Transponíveis , Biblioteca Gênica , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Software , Sulfitos/química , Células THP-1 , Transcrição Gênica , Transposases/genética , Transposases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA