RESUMO
Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate.
Las características de las raíces de los bosques tropicales y las estrategias de adquisición de recursos están subrepresentadas en modelos de vegetación, lo que dificulta la predicción del efecto de cambio de clima para estos ecosistemas ricos en carbono. Los bosques tropicales a menudo tienen combinaciones únicas a nivel mundial de alta biodiversidad taxonómica y funcional, estacionalidad de precipitación, y suelos infértiles, dando lugar a patrones distintos en los rasgos y funciones de las raíces en comparación con los ecosistemas de latitudes más altas. Integramos los avances recientes en nuestra comprensión de la función subterránea de los bosques tropicales en modelos de vegetación, centrándonos en la adquisición de agua y nutrientes. Ofrecemos comparaciones de avances recientes en la comprensión empírica y de modelos de las características de las raíces que representan procesos funcionales importantes en los bosques tropicales. Nos centramos en: (1) estrategias de raíces finas para adquisición de recursos del suelo, (2) acoplamiento y compensaciones entre adquisición del agua y de nutrientes, y (3) vínculos entre funciones sobre tierra y debajo del superficie en bosques tropicales. Sugerimos vías para representar estas comunidades de plantas extremadamente diversas en grupos computacionalmente manejables y ecológicamente significativos en modelos. Los bosques tropicales se están calentando, tienen cambios en los regímenes de lluvias, y tienen una exacerbación de la escasez de nutrientes del suelo causada por el elevado CO2 atmosférico. La representación precisa de las funciones de los bosques tropicales en modelos es crucial para comprender las interacciones de este bioma con el clima.
Assuntos
Ecossistema , Raízes de Plantas , Nitrogênio , Florestas , Solo , Plantas , Água , Clima Tropical , ÁrvoresRESUMO
Plant trait variation drives plant function, community composition and ecosystem processes. However, our current understanding of trait variation disproportionately relies on aboveground observations. Here we integrate root traits into the global framework of plant form and function. We developed and tested an overarching conceptual framework that integrates two recently identified root trait gradients with a well-established aboveground plant trait framework. We confronted our novel framework with published relationships between above- and belowground trait analogues and with multivariate analyses of above- and belowground traits of 2510 species. Our traits represent the leaf and root conservation gradients (specific leaf area, leaf and root nitrogen concentration, and root tissue density), the root collaboration gradient (root diameter and specific root length) and the plant size gradient (plant height and rooting depth). We found that an integrated, whole-plant trait space required as much as four axes. The two main axes represented the fast-slow 'conservation' gradient on which leaf and fine-root traits were well aligned, and the 'collaboration' gradient in roots. The two additional axes were separate, orthogonal plant size axes for height and rooting depth. This perspective on the multidimensional nature of plant trait variation better encompasses plant function and influence on the surrounding environment.
Assuntos
Ecossistema , Plantas , Fenótipo , Folhas de PlantaRESUMO
Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.
Assuntos
Biodiversidade , Ecossistema , Plantas , Biomassa , Florestas , PradariaRESUMO
Resolving ecological-economic trade-offs between biodiversity and yields is a key challenge when addressing the biodiversity crisis in tropical agricultural landscapes. Here, we focused on the relation between seven different taxa (trees, herbaceous plants, birds, amphibians, reptiles, butterflies, and ants) and yields in vanilla agroforests in Madagascar. Agroforests established in forests supported overall 23% fewer species and 47% fewer endemic species than old-growth forests, and 14% fewer endemic species than forest fragments. In contrast, agroforests established on fallows had overall 12% more species and 38% more endemic species than fallows. While yields increased with vanilla vine density and length, non-yield related variables largely determined biodiversity. Nonetheless, trade-offs existed between yields and butterflies as well as reptiles. Vanilla yields were generally unrelated to richness of trees, herbaceous plants, birds, amphibians, reptiles, and ants, opening up possibilities for conservation outside of protected areas and restoring degraded land to benefit farmers and biodiversity alike.
Assuntos
Formigas , Borboletas , Anfíbios , Animais , Biodiversidade , Aves , Conservação dos Recursos Naturais , Florestas , Plantas , Répteis , ÁrvoresRESUMO
Ecological theory is built on trade-offs, where trait differences among species evolved as adaptations to different environments. Trade-offs are often assumed to be bidirectional, where opposite ends of a gradient in trait values confer advantages in different environments. However, unidirectional benefits could be widespread if extreme trait values confer advantages at one end of an environmental gradient, whereas a wide range of trait values are equally beneficial at the other end. Here, we show that root traits explain species occurrences along broad gradients of temperature and water availability, but model predictions only resembled trade-offs in two out of 24 models. Forest species with low specific root length and high root tissue density (RTD) were more likely to occur in warm climates but species with high specific root length and low RTD were more likely to occur in cold climates. Unidirectional benefits were more prevalent than trade-offs: for example, species with large-diameter roots and high RTD were more commonly associated with dry climates, but species with the opposite trait values were not associated with wet climates. Directional selection for traits consistently occurred in cold or dry climates, whereas a diversity of root trait values were equally viable in warm or wet climates. Explicit integration of unidirectional benefits into ecological theory is needed to advance our understanding of the consequences of trait variation on species responses to environmental change.
Assuntos
Florestas , Dispersão Vegetal , Clima , Fenótipo , ÁguaRESUMO
Anthropogenic global change alters the activity and functional composition of soil communities that are responsible for crucial ecosystem functions and services. Two of the most pervasive global change drivers are drought and nutrient enrichment. However, the responses of soil organisms to interacting global change drivers remain widely unknown. We tested the interactive effects of extreme drought and fertilization on soil biota ranging from microbes to invertebrates across seasons. We expected drought to reduce the activity of soil organisms and fertilization to induce positive bottom-up effects via increased plant productivity. Furthermore, we hypothesized fertilization to reinforce drought effects through enhanced plant growth, resulting in even drier soil conditions. Our results revealed that drought had detrimental effects on soil invertebrate feeding activity and simplified nematode community structure, whereas soil microbial activity and biomass were unaffected. Microbial biomass increased in response to fertilization, whereas invertebrate feeding activity substantially declined. Notably, these effects were consistent across seasons. The dissimilar responses suggest that soil biota differ vastly in their vulnerability to global change drivers. Thus, important ecosystem processes like decomposition and nutrient cycling, which are driven by the interdependent activity of soil microorganisms and invertebrates, may be disrupted under future conditions.
Assuntos
Secas , Solo , Animais , Biomassa , Ecossistema , Invertebrados , Estações do Ano , Microbiologia do SoloRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity-ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics.