Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 380(2237): 20220073, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36209804

RESUMO

We design sources for the two-dimensional Helmholtz equation that can cloak an object by cancelling out the incident field in a region, without the sources completely surrounding the object to hide. As in previous work for real positive wavenumbers, the sources are also determined by the Green identities. The novelty is that we prove that the same approach works for complex wavenumbers which makes it applicable to a variety of media, including media with dispersion, loss and gain. Furthermore, by deriving bounds on Graf's addition formulas with complex arguments, we obtain new estimates that allow to quantify the quality of the cloaking effect. We illustrate our results by applying them to achieve active exterior cloaking for the heat equation. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 2)'.

2.
Phys Rev Lett ; 126(14): 145501, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891465

RESUMO

We theoretically show that a superposition of plane waves causes small (compared to the wavelength) particles dispersed in a fluid to assemble in quasiperiodic two or three-dimensional patterns. We experimentally demonstrate this theory by using ultrasound waves to assemble quasiperiodic patterns of carbon nanoparticles in water using an octagonal arrangement of ultrasound transducers, and we document good agreement between theory and experiments. The theory also applies to obtaining quasiperiodic patterns in other situations where particles move with linear waves, such as optical lattices.

3.
Opt Lett ; 45(12): 3183, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538937

RESUMO

In Opt. Lett.44, 5450 (2019)OPLEDP0146-959210.1364/OL.44.005450, there were errors in the author listing and in one figure.

4.
Proc Math Phys Eng Sci ; 477(2249): 20200941, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-35153558

RESUMO

We present an active cloaking method for the parabolic heat (and mass or light diffusion) equation that can hide both objects and sources. By active, we mean that it relies on designing monopole and dipole heat source distributions on the boundary of the region to be cloaked. The same technique can be used to make a source or an object look like a different one to an observer outside the cloaked region, from the perspective of thermal measurements. Our results assume a homogeneous isotropic bulk medium and require knowledge of the source to cloak or mimic, but are in most cases independent of the object to cloak.

5.
Proc Math Phys Eng Sci ; 475(2232): 20190574, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31892838

RESUMO

We determine crystal-like materials that can be fabricated by using a standing acoustic wave to arrange small particles in a non-viscous liquid resin, which is cured afterwards to keep the particles in the desired locations. For identical spherical particles with the same physical properties and small compared to the wavelength, the locations where the particles are trapped correspond to the minima of an acoustic radiation potential which describes the net forces that a particle is subject to. We show that the global minima of spatially periodic acoustic radiation potentials can be predicted by the eigenspace of a small real symmetric matrix corresponding to its smallest eigenvalue. We relate symmetries of this eigenspace to particle arrangements composed of points, lines or planes. Since waves are used to generate the particle arrangements, the arrangement's periodicity is limited to certain Bravais lattice classes that we enumerate in two and three dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA