Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 143(26): 2778-2790, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38603632

RESUMO

ABSTRACT: Notch signaling regulates cell-fate decisions in several developmental processes and cell functions. However, the role of Notch in hepatic thrombopoietin (TPO) production remains unclear. We noted thrombocytopenia in mice with hepatic Notch1 deficiency and so investigated TPO production and other features of platelets in these mice. We found that the liver ultrastructure and hepatocyte function were comparable between control and Notch1-deficient mice. However, the Notch1-deficient mice had significantly lower plasma TPO and hepatic TPO messenger RNA levels, concomitant with lower numbers of platelets and impaired megakaryocyte differentiation and maturation, which were rescued by addition of exogenous TPO. Additionally, JAK2/STAT3 phosphorylation was significantly inhibited in Notch1-deficient hepatocytes, consistent with the RNA-sequencing analysis. JAK2/STAT3 phosphorylation and TPO production was also impaired in cultured Notch1-deficient hepatocytes after treatment with desialylated platelets. Consistently, hepatocyte-specific Notch1 deletion inhibited JAK2/STAT3 phosphorylation and hepatic TPO production induced by administration of desialylated platelets in vivo. Interestingly, Notch1 deficiency downregulated the expression of HES5 but not HES1. Moreover, desialylated platelets promoted the binding of HES5 to JAK2/STAT3, leading to JAK2/STAT3 phosphorylation and pathway activation in hepatocytes. Hepatocyte Ashwell-Morell receptor (AMR), a heterodimer of asialoglycoprotein receptor 1 [ASGR1] and ASGR2, physically associates with Notch1, and inhibition of AMR impaired Notch1 signaling activation and hepatic TPO production. Furthermore, blockage of Delta-like 4 on desialylated platelets inhibited hepatocyte Notch1 activation and HES5 expression, JAK2/STAT3 phosphorylation, and subsequent TPO production. In conclusion, our study identifies a novel regulatory role of Notch1 in hepatic TPO production, indicating that it might be a target for modulating TPO level.


Assuntos
Hepatócitos , Janus Quinase 2 , Fígado , Receptor Notch1 , Trombopoetina , Animais , Receptor Notch1/metabolismo , Receptor Notch1/genética , Trombopoetina/metabolismo , Trombopoetina/genética , Camundongos , Fígado/metabolismo , Hepatócitos/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Camundongos Knockout , Transdução de Sinais , Fosforilação , Plaquetas/metabolismo , Camundongos Endogâmicos C57BL , Trombocitopenia/metabolismo , Trombocitopenia/genética , Trombocitopenia/patologia
2.
Proc Natl Acad Sci U S A ; 120(20): e2302407120, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155859

RESUMO

Clarifying the reaction pathways at the solid-water interface and in bulk water solution is of great significance for the design of heterogeneous catalysts for selective oxidation of organic pollutants. However, achieving this goal is daunting because of the intricate interfacial reactions at the catalyst surface. Herein, we unravel the origin of the organic oxidation reactions with metal oxide catalysts, revealing that the radical-based advanced oxidation processes (AOPs) prevail in bulk water but not on the solid catalyst surfaces. We show that such differing reaction pathways widely exist in various chemical oxidation (e.g., high-valent Mn3+ and MnOX) and Fenton and Fenton-like catalytic oxidation (e.g., Fe2+ and FeOCl catalyzing H2O2, Co2+ and Co3O4 catalyzing persulfate) systems. Compared with the radical-based degradation and polymerization pathways of one-electron indirect AOP in homogeneous reactions, the heterogeneous catalysts provide unique surface properties to trigger surface-dependent coupling and polymerization pathways of a two-electron direct oxidative transfer process. These findings provide a fundamental understanding of catalytic organic oxidation processes at the solid-water interface, which could guide the design of heterogeneous nanocatalysts.

3.
Nature ; 567(7748): 394-398, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842653

RESUMO

The invasion of mammalian cytoplasm by microbial DNA from infectious pathogens or by self DNA from the nucleus or mitochondria represents a danger signal that alerts the host immune system1. Cyclic GMP-AMP synthase (cGAS) is a sensor of cytoplasmic DNA that activates the type-I interferon pathway2. On binding to DNA, cGAS is activated to catalyse the synthesis of cyclic GMP-AMP (cGAMP) from GTP and ATP3. cGAMP functions as a second messenger that binds to and activates stimulator of interferon genes (STING)3-9. STING then recruits and activates tank-binding kinase 1 (TBK1), which phosphorylates STING and the transcription factor IRF3 to induce type-I interferons and other cytokines10,11. However, how cGAMP-bound STING activates TBK1 and IRF3 is not understood. Here we present the cryo-electron microscopy structure of human TBK1 in complex with cGAMP-bound, full-length chicken STING. The structure reveals that the C-terminal tail of STING adopts a ß-strand-like conformation and inserts into a groove between the kinase domain of one TBK1 subunit and the scaffold and dimerization domain of the second subunit in the TBK1 dimer. In this binding mode, the phosphorylation site Ser366 in the STING tail cannot reach the kinase-domain active site of bound TBK1, which suggests that STING phosphorylation by TBK1 requires the oligomerization of both proteins. Mutational analyses validate the interaction mode between TBK1 and STING and support a model in which high-order oligomerization of STING and TBK1, induced by cGAMP, leads to STING phosphorylation by TBK1.


Assuntos
Microscopia Crioeletrônica , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Galinhas , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutação , Nucleotídeos Cíclicos/metabolismo , Fosforilação , Ligação Proteica/genética , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética
4.
Nature ; 567(7747): 262-266, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842662

RESUMO

Cyclic GMP-AMP (cGAMP) synthase (cGAS) detects infections or tissue damage by binding to microbial or self DNA in the cytoplasm1. Upon binding DNA, cGAS produces cGAMP that binds to and activates the adaptor protein STING, which then activates the kinases IKK and TBK1 to induce interferons and other cytokines2-6. Here we report that STING also activates autophagy through a mechanism that is independent of TBK1 activation and interferon induction. Upon binding cGAMP, STING translocates to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and the Golgi in a process that is dependent on the COP-II complex and ARF GTPases. STING-containing ERGIC serves as a membrane source for LC3 lipidation, which is a key step in autophagosome biogenesis. cGAMP induced LC3 lipidation through a pathway that is dependent on WIPI2 and ATG5 but independent of the ULK and VPS34-beclin kinase complexes. Furthermore, we show that cGAMP-induced autophagy is important for the clearance of DNA and viruses in the cytosol. Interestingly, STING from the sea anemone Nematostella vectensis induces autophagy but not interferons in response to stimulation by cGAMP, which suggests that induction of autophagy is a primordial function of the cGAS-STING pathway.


Assuntos
Autofagia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Animais , Autofagossomos/metabolismo , Proteína 5 Relacionada à Autofagia/deficiência , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/deficiência , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/deficiência , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Citosol/virologia , Vírus de DNA/genética , Vírus de DNA/metabolismo , DNA Viral/metabolismo , Retículo Endoplasmático/metabolismo , Evolução Molecular , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Interferons/biossíntese , Interferons/imunologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos Cíclicos/imunologia , Nucleotídeos Cíclicos/metabolismo , Proteínas de Ligação a Fosfato , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Anêmonas-do-Mar , Proteínas de Transporte Vesicular/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165185

RESUMO

Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N4 sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electron-depleted Cu-N4/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N4 single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N4/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N4 sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts.

6.
Blood ; 140(9): 1038-1051, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35767715

RESUMO

Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is a protein tyrosine phosphatase that negatively regulates T-cell signaling. However, whether it is expressed and functions in platelets remains unknown. Here we investigated the expression and role of PTPN22 in platelet function. We reported PTPN22 expression in both human and mouse platelets. Using PTPN22-/- mice, we showed that PTPN22 deficiency significantly shortened tail-bleeding time and accelerated arterial thrombus formation without affecting venous thrombosis and the coagulation factors VIII and IX. Consistently, PTPN22-deficient platelets exhibited enhanced platelet aggregation, granule secretion, calcium mobilization, lamellipodia formation, spreading, and clot retraction. Quantitative phosphoproteomic analysis revealed the significant difference of phosphodiesterase 5A (PDE5A) phosphorylation in PTPN22-deficient platelets compared with wild-type platelets after collagen-related peptide stimulation, which was confirmed by increased PDE5A phosphorylation (Ser92) in collagen-related peptide-treated PTPN22-deficient platelets, concomitant with reduced level and vasodilator-stimulated phosphoprotein phosphorylation (Ser157/239). In addition, PTPN22 interacted with phosphorylated PDE5A (Ser92) and dephosphorylated it in activated platelets. Moreover, purified PTPN22 but not the mutant form (C227S) possesses intrinsic serine phosphatase activity. Furthermore, inhibition of PTPN22 enhanced human platelet aggregation, spreading, clot retraction, and increased PDE5A phosphorylation (Ser92). In conclusion, our study shows a novel role of PTPN22 in platelet function and arterial thrombosis, identifying new potential targets for future prevention of thrombotic or cardiovascular diseases.


Assuntos
Hemostasia , Proteína Tirosina Fosfatase não Receptora Tipo 22 , Trombose , Animais , Plaquetas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Ativação Plaquetária , Agregação Plaquetária , Testes de Função Plaquetária , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Trombose/genética
7.
J Med Genet ; 60(11): 1092-1104, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37316189

RESUMO

BACKGROUND: Helios (encoded by IKZF2), a member of the Ikaros family of transcription factors, is a zinc finger protein involved in embryogenesis and immune function. Although predominantly recognised for its role in the development and function of T lymphocytes, particularly the CD4+ regulatory T cells (Tregs), the expression and function of Helios extends beyond the immune system. During embryogenesis, Helios is expressed in a wide range of tissues, making genetic variants that disrupt the function of Helios strong candidates for causing widespread immune-related and developmental abnormalities in humans. METHODS: We performed detailed phenotypic, genomic and functional investigations on two unrelated individuals with a phenotype of immune dysregulation combined with syndromic features including craniofacial differences, sensorineural hearing loss and congenital abnormalities. RESULTS: Genome sequencing revealed de novo heterozygous variants that alter the critical DNA-binding zinc fingers (ZFs) of Helios. Proband 1 had a tandem duplication of ZFs 2 and 3 in the DNA-binding domain of Helios (p.Gly136_Ser191dup) and Proband 2 had a missense variant impacting one of the key residues for specific base recognition and DNA interaction in ZF2 of Helios (p.Gly153Arg). Functional studies confirmed that both these variant proteins are expressed and that they interfere with the ability of the wild-type Helios protein to perform its canonical function-repressing IL2 transcription activity-in a dominant negative manner. CONCLUSION: This study is the first to describe dominant negative IKZF2 variants. These variants cause a novel genetic syndrome characterised by immunodysregulation, craniofacial anomalies, hearing impairment, athelia and developmental delay.


Assuntos
Anormalidades Craniofaciais , Deficiências do Desenvolvimento , Perda Auditiva , Fator de Transcrição Ikaros , Humanos , Proteínas de Ligação a DNA/genética , Fator de Transcrição Ikaros/genética , Síndrome , Deficiências do Desenvolvimento/genética , Anormalidades Craniofaciais/genética
8.
J Gene Med ; 25(1): e3461, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314054

RESUMO

BACKGROUND: Congenital heart disease (CHD) frequently manifests as a complex phenotype and approximately one-third of cases may be caused by genetic factors. BCOR, an X-linked gene encoding the corepressor of BCL6, has been demonstrated to be closely involved in human heart development. However, whether BCOR variants represent the genetic etiology underlying CHD needs further investigation. METHODS: We performed whole exome sequencing on CHD nuclear families and identified a candidate gene, BCOR, by robust bioinformatic analysis and medical literature searches. Targeted DNA sequencing of the candidate gene was conducted and then the association between variants and the risk of developing CHD was analyzed. The effects of BCOR mutations on gene expression, localization, protein interaction, and signaling pathways were evaluated in vitro. RESULTS: We identified a BCOR hemizygous missense variant (c.1448C>T, p.Pro483Leu) in a male proband presented with CHD/heterotaxy. Sanger sequencing confirmed that this variant was inherited from his asymptomatic mother. Interestingly, through literature searches, we observed another novel BCOR hemizygous missense variant (c.1619G>A, p.Arg540Gln) in a CHD patient with heterotaxy, supporting the pathogenic evidence of BCOR variants. Functional experiments conducted in vitro revealed that the variant p.Pro483Leu altered the subcellular localization of BCOR protein, disrupted its interaction with BCL6, and significantly promoted cell proliferation, whereas the variant p.Arg540Gln displayed no obvious effects. Nevertheless, transcriptional analysis revealed that down-regulation of BCOR substantially enhanced the activities of mitogen-activated protein and phosphoinositide 3-kinase-AKT signaling pathways, which are closely attributed to heart development. Targeted sequencing of 932 sporadic CHD patients enriched nine variants of BCOR predicted as likely rare and damaging and a septal defect was present in 81.8% (9/11) of them, including the two probands, which was consistent with the possible phenotype caused by BCOR defects. CONCLUSIONS: The findings of the present study indicate that variants in BCOR may predispose individuals to CHD in the Chinese Han population.


Assuntos
Cardiopatias Congênitas , Defeitos dos Septos Cardíacos , Humanos , Masculino , Genes Ligados ao Cromossomo X , População do Leste Asiático , Fosfatidilinositol 3-Quinases , Cardiopatias Congênitas/genética , Defeitos dos Septos Cardíacos/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética
9.
Am J Med Genet A ; 191(6): 1593-1598, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36866832

RESUMO

The Notch proteins play key roles in cell fate determination during development. Germline pathogenic variants in NOTCH1 predispose to a spectrum of cardiovascular malformations including Adams-Oliver syndrome and a wide variety of isolated complex and simple congenital heart defects. The intracellular C-terminus of the single-pass transmembrane receptor encoded by NOTCH1 contains a transcriptional activating domain (TAD) required for target gene activation and a PEST domain (a sequence rich in proline, glutamic acid, serine, and threonine), regulating protein stability and turnover. We present a patient with a novel variant encoding a truncated NOTCH1 protein without the TAD and PEST domain (NM_017617.4: c.[6626_6629del];[=], p.(Tyr2209CysfsTer38)) and extensive cardiovascular abnormalities consistent with a NOTCH1-mediated mechanism. This variant fails to promote transcription of target genes as assessed by luciferase reporter assay. Given the roles of the TAD and PEST domains in NOTCH1 function and regulation, we hypothesize that loss of both the TAD and the PEST domain results in a stable, loss-of-function protein that acts as an antimorph through competition with wild-type NOTCH1.


Assuntos
Displasia Ectodérmica , Deformidades Congênitas dos Membros , Dermatoses do Couro Cabeludo , Humanos , Receptor Notch1/genética , Displasia Ectodérmica/genética , Dermatoses do Couro Cabeludo/congênito , Deformidades Congênitas dos Membros/genética
10.
BMC Infect Dis ; 23(1): 786, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951894

RESUMO

BACKGROUND: Spontaneous bacterial peritonitis (SBP) is a common complication in patients with cirrhosis. The diagnosis of SBP is still mostly based on ascites cultures and absolute ascites polymorphonuclear (PMN) cell count, which restricts the widely application in clinical settings. This study aimed to identify reliable and easy-to-use biomarkers for both diagnosis and prognosis of cirrhotic patients with SBP. METHODS: We conducted a retrospective study including 413 cirrhotic patients from March 2013 to July 2022 in the First Affiliated Hospital of Guangxi Medical University. Patients' clinical characteristics and laboratory indices were collected and analyzed. Two machine learning methods (Xgboost and LASSO algorithms) and a logistic regression analysis were adopted to screen and validate the indices associated with the risk of SBP. A predictive model was constructed and validated using the estimated area under curve (AUC). The indices related to the survival of cirrhotic patients were also analyzed. RESULTS: A total of 413 cirrhotic patients were enrolled in the study, of whom 329 were decompensated and 84 were compensated. 52 patients complicated and patients with SBP had a poorer Child-Pugh score (P < 0.05). Patients with SBP had a greater proportion of malignancies than those without SBP(P < 0.05). The majority of laboratory test indicators differed significantly between patients with and without SBP (P < 0.05). Albumin, neutrophil-to-lymphocyte ratio (NLR), and ferritin-to-neutrophil ratio (FNR) were found to be independently associated with SBP in decompensated cirrhotic patients using LASSO algorithms, and logistic regression analysis. The model established by the three indices showed a high predictive value with an AUC of 0.808. Furthermore, increased neutrophils, ALP, and C-reactive protein-to-albumin ratio (CAR) were associated with the shorter survival time of patients with decompensated cirrhosis, and the combination of these indices showed a greater predictive value for cirrhotic patients. CONCLUSIONS: The present study identified FNR as a novel index in the diagnosis of SBP in decompensated patients with cirrhosis. A model based on neutrophils, ALP and CAR showed high performance in predicting the prognosis of patients with decompensated cirrhosis.


Assuntos
Infecções Bacterianas , Peritonite , Humanos , Prognóstico , Ascite/complicações , Estudos Retrospectivos , Infecções Bacterianas/complicações , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , China , Peritonite/microbiologia , Cirrose Hepática/diagnóstico , Proteína C-Reativa
11.
J Allergy Clin Immunol ; 149(5): 1691-1701.e9, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35093485

RESUMO

BACKGROUND: Allergen-specific immunotherapy (AIT) is the mainstay in the treatment of allergic diseases, but the therapeutic effects of AIT need to be improved. CD38+ B cells are an immune cell fraction involved in the pathogenesis of allergic diseases as well as in immune regulation. OBJECTIVE: We sought to elucidate the role of antigen-specific CD38+ B cells in AIT. METHODS: An analysis was carried out on AIT results of 48 patients with perennial allergic rhinitis (AR), among which peripheral blood immune cells were analyzed by flow cytometry; serum cytokine levels were determined by ELISA. An AR murine model was developed to test the role of CD38+ B cells in AIT. RESULTS: A fraction of antigen-specific CD38+ B cell was detected in AR patients. CD38+ B-cell frequency was negatively correlated with the therapeutic effects of AIT. A negative correlation was detected between the CD38+ B-cell frequency and regulatory T-cell frequency in AR patients treated with AIT. Exposure to specific antigens induced CD38+ B cells to produce IL-6, that converted Treg cells to TH17 cells. Coadministration of anti-CD38 antibody significantly promoted the therapeutic effects of AIT. CONCLUSIONS: Antigen-specific CD38+ B cells compromise AIT effects by producing IL-6 to convert regulatory T cells to TH17 cells. Inhibition of CD38+ B cells promotes the effects of AIT.


Assuntos
Rinite Alérgica Perene , Rinite Alérgica , Alérgenos , Animais , Linfócitos B , Dessensibilização Imunológica/métodos , Humanos , Fatores Imunológicos , Interleucina-6 , Camundongos , Rinite Alérgica/terapia
12.
J Cell Mol Med ; 26(10): 2766-2776, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35343043

RESUMO

Interleukin 10 (IL-10)-producing B cells (B10 cells) are a canonical cell fraction for regulating other activities of immune cells. Posttranscriptional modification of IL-10 in B10 cells is not yet fully understood. Short-chain fatty acids play an important role to regulate the functions of immune cells. This study aims to clarify the role of propionic acid (PA), a short-chain fatty acid, in regulating the expression of IL-10 in B10 cells. Blood samples were collected from patients with food allergy (FA) and healthy subjects. Serum and cellular components were prepared with the samples, and analysed by enzyme-linked immunosorbent assay and flow cytometry, respectively. The results showed that serum PA levels were lower in FA patients. PA concentrations were negatively correlated with serum cytokine Th2 concentrations, specific IgE concentrations in serum and skin prick test results. The peripheral frequency of B10 cells and the production of IL-10 in B cells were also associated with serum PA concentrations. Activation of B cells by CpG induced the production of IL-10 and tristetretrprolin (TTP), in which TTP caused the spontaneous decay of IL-10 mRNA. PA was necessary to stabilize the IL-10 mRNA in B cells by inducing the production of granzyme B, which resulted in the degradation of the IL-10 mRNA. Administration of PA attenuated FA response in mice by maintaining homeostasis of B10 cells. In conclusion, PA is needed to stabilize the expression of IL-10 in B10 cells. PA administration can mitigate experimental FA by maintaining B10 cell functions.


Assuntos
Linfócitos B Reguladores , Hipersensibilidade Alimentar , Animais , Linfócitos B Reguladores/metabolismo , Humanos , Interleucina-10/metabolismo , Contagem de Linfócitos , Camundongos , Propionatos/metabolismo , Propionatos/farmacologia , RNA Mensageiro/metabolismo
13.
Opt Lett ; 47(3): 449-452, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103648

RESUMO

We present a new, to the best of our knowledge, type of off-axis digital holographic imaging method with a long field of view (FOV). In the method, the pre-magnification recording geometry is realized by a cylindrical lens (CL) or cylindrical beam instead of a conventional objective or spherical beam in traditional off-axis digital holography (DH). At the same time, the reference beam is replaced by a divergent cylindrical beam. Theoretical analysis and experiments have justified that, in off-axis DHs, the adoption of the cylindrical beams can realize a one-dimensional pre-magnification of the object beam only in the off-axis direction to satisfy the bandwidth constraint, and at the same time the FOV of the reconstructed image in the orthogonal direction can remain unaffected. In comparison with existing off-axis DHs, this cylindrical wave-based DH (CWDH) method has a distinct advantage in expanding the FOV of the reconstructed image. The FOV feature of the CWDH makes it especially suitable for applications that require a long FOV such as imaging samples in microfluidic channels.

14.
Sensors (Basel) ; 22(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36236783

RESUMO

The exponential growth in remote sensing, coupled with advancements in integrated circuits (IC) design and fabrication technology for communication, has prompted the progress of Wireless Sensor Networks (WSN). WSN comprises of sensor nodes and hubs fit for detecting, processing, and communicating remotely. Sensor nodes have limited resources such as memory, energy and computation capabilities restricting their ability to process large volume of data that is generated. Compressing the data before transmission will help alleviate the problem. Many data compression methods have been proposed but mainly for image processing and a vast majority of them are not pertinent on sensor nodes because of memory impediment, energy utilization and handling speed. To overcome this issue, authors in this research have chosen Run Length Encoding (RLE) and Adaptive Huffman Encoding (AHE) data compression techniques as they can be executed on sensor nodes. Both RLE and AHE are capable of balancing compression ratio and energy utilization. In this paper, a hybrid method comprising RLE and AHE, named as H-RLEAHE, is proposed and further investigated for sensor nodes. In order to verify the efficacy of the data compression algorithms, simulations were run, and the results compared with the compression techniques employing RLE, AHE, H-RLEAHE, and without the use of any compression approach for five distinct scenarios. The results demonstrate the RLE's efficiency, as it surpasses alternative data compression methods in terms of energy efficiency, network speed, packet delivery rate, and residual energy throughout all iterations.

15.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498840

RESUMO

Octopamine (OA) is structurally and functionally similar to adrenaline/noradrenaline in vertebrates, and OA modulates diverse physiological and behavioral processes in invertebrates. OA exerts its actions by binding to specific octopamine receptors (OARs). Functional and pharmacological characterization of OARs have been investigated in several insects. However, the literature on OARs is scarce for parasitoids. Here we cloned three ß-adrenergic-like OARs (CcOctßRs) from Cotesia chilonis. CcOctßRs share high similarity with their own orthologous receptors. The transcript levels of CcOctßRs were varied in different tissues. When heterologously expressed in CHO-K1 cells, CcOctßRs induced cAMP production, and were dose-dependently activated by OA, TA and putative octopaminergic agonists. Their activities were inhibited by potential antagonists and were most efficiently blocked by epinastine. Our study offers important information about the molecular and pharmacological properties of ß-adrenergic-like OARs from C. chilonis that will provide the basis to reveal the contribution of individual receptors to the physiological processes and behaviors in parasitoids.


Assuntos
Himenópteros , Receptores de Amina Biogênica , Animais , Adrenérgicos , Receptores de Amina Biogênica/metabolismo , Octopamina/farmacologia , Octopamina/metabolismo
16.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142343

RESUMO

S-RNase plays vital roles in the process of self-incompatibility (SI) in Rutaceae plants. Data have shown that the rejection phenomenon during self-pollination is due to the degradation of pollen tube RNA by S-RNase. The cytoskeleton microfilaments of pollen tubes are destroyed, and other components cannot extend downwards from the stigma and, ultimately, cannot reach the ovary to complete fertilisation. In this study, four S-RNase gene sequences were identified from the 'XiangShui' lemon genome and ubiquitome. Sequence analysis revealed that the conserved RNase T2 domains within S-RNases in 'XiangShui' lemon are the same as those within other species. Expression pattern analysis revealed that S3-RNase and S4-RNase are specifically expressed in the pistils, and spatiotemporal expression analysis showed that the S3-RNase expression levels in the stigmas, styles and ovaries were significantly higher after self-pollination than after cross-pollination. Subcellular localisation analysis showed that the S1-RNase, S2-RNase, S3-RNase and S4-RNase were found to be expressed in the nucleus according to laser confocal microscopy. In addition, yeast two-hybrid (Y2H) assays showed that S3-RNase interacted with F-box, Bifunctional fucokinase/fucose pyrophosphorylase (FKGP), aspartic proteinase A1, RRP46, pectinesterase/pectinesterase inhibitor 51 (PME51), phospholipid:diacylglycerol acyltransferase 1 (PDAT1), gibberellin receptor GID1B, GDT1-like protein 4, putative invertase inhibitor, tRNA ligase, PAP15, PAE8, TIM14-2, PGIP1 and p24beta2. Moreover, S3-RNase interacted with TOPP4. Therefore, S3-RNase may play an important role in the SI of 'XiangShui' lemon.


Assuntos
Ácido Aspártico Proteases , Citrus , Autoincompatibilidade em Angiospermas , Citrus/metabolismo , Diacilglicerol O-Aciltransferase , Endorribonucleases , Fucose , Giberelinas , Fosfolipídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , RNA , RNA Ligase (ATP) , Ribonucleases/genética , Ribonucleases/metabolismo , Autoincompatibilidade em Angiospermas/genética , beta-Frutofuranosidase
17.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2788-2801, 2022 May.
Artigo em Zh | MEDLINE | ID: mdl-35718499

RESUMO

This study aims to evaluate the efficacy and safety of heat-clearing and detoxifying Chinese medicine injections in the treatment of acute exacerbation of chronic obstructive pulmonary disease(AECOPD). Randomized controlled trial(RCT) on the treatment of AECOPD with heat-clearing and detoxifying Chinese medicine injections were retrieved from 8 databases including CNKI and PubMed(from establishment to July 11, 2021). Related information in eligible articles was extracted, and the quality of the included articles was assessed by Cochrane collaboration's tool for assessing risk of bias. Stata SE 15.1 and ADDIS 1.16.6 were employed for data analysis. A total of 81 RCTs were screened out, involving 7 526 patients(3 782 in the experimental group and 3 744 in the control group). According to the statistical difference and network Meta-analysis, the injections are in the order of(1)Reduning Injection+conventional western medicine>Tanreqing Injection+conventional western medicine in improving the effective rate,(2)Reduning Injection+conventional western medicine>Tanreqing Injection+conventional western medicine in decreasing C-reactive protein(CRP),(3)Reduning Injection+conventional western medicine>Xiyanping Injection+conventional western medicine>Tanreqing Injection+conventional western medicine in reducing white blood cell count(WBC),(4)Yuxingcao Injection+conventional western medicine>Reduning Injection+conventional western medicine>Tanreqing Injection+conventional western medicine in lowering partial pressure of carbon dioxide(PaCO_2),(5)Yuxingcao Injection+conventional western medicine>Reduning Injection+conventional western medicine>Tanreqing Injection+conventional western medicine>Xiyanping Injection+conventional western medicine in improving partial pressure of oxygen(PaO_2), and(6)Qingkailing Injection+conventional western medicine>Tanreqing Injection+conventional western medicine in shortening mean hospital stay. In terms of safety, none of the five injections have serious adverse reactions. The five heat-clearing and detoxifying Chinese medicine injections are effective for AECOPD, but the mechanisms are different. Among them, Reduning Injection+conventional western medicine and Tanreqing Injection+conventional western medicine demonstrate better and more effects. Due to the differences in the quantity and quality of included studies, the conclusion needs to be further verified.


Assuntos
Medicamentos de Ervas Chinesas , Doença Pulmonar Obstrutiva Crônica , Medicamentos de Ervas Chinesas/efeitos adversos , Temperatura Alta , Humanos , Injeções , Medicina Tradicional Chinesa , Metanálise em Rede , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
18.
Environ Sci Technol ; 55(10): 7063-7071, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33961405

RESUMO

As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn-Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO4·-, ·OH, and 1O2), the MnFeO nanocubes first adsorbed p-ASA to form a ligand-oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process.


Assuntos
Arsênio , Poluentes Químicos da Água , Ácido Arsanílico , Oxirredução , Óxidos , Peróxidos
19.
Bioorg Med Chem ; 37: 116109, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33780813

RESUMO

A novel series of multitargeted molecules were designed and synthesized by combining the pharmacological role of cholinesterase inhibitor and antioxidant of steroid as potential ligands for the treatment of Vascular Dementia (VD). The oxygen-glucose deprivation (OGD) model was used to evaluate these molecules, among which the most potent compound ML5 showed the highest activity. Firstly, ML5 showed appropriate inhibition of cholinesterases (ChEs) at orally 15 mg/kg in vivo. The further test revealed that ML5 promoted the nuclear translocation of Nrf2. Furthermore, ML5 has significant neuroprotective effect in vivo model of bilateral common carotid artery occlusion (BCCAO), significantly increasing the expression of Nrf2 protein in the cerebral cortex. In the molecular docking research, we predicted the ML5 combined with hAChE and Keap1. Finally, compound ML5 displayed normal oral absorption and it was nontoxic at 500 mg/kg, po, dose. We can draw the conclusion that ML5 could be considered as a new potential compound for VD treatment.


Assuntos
Fármacos do Sistema Nervoso Central/uso terapêutico , Inibidores da Colinesterase/uso terapêutico , Demência Vascular/tratamento farmacológico , Diosgenina/análogos & derivados , Diosgenina/uso terapêutico , Substâncias Protetoras/uso terapêutico , Acetilcolinesterase/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/síntese química , Fármacos do Sistema Nervoso Central/metabolismo , Fármacos do Sistema Nervoso Central/toxicidade , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/toxicidade , Diosgenina/metabolismo , Diosgenina/toxicidade , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Neuroproteção/efeitos dos fármacos , Substâncias Protetoras/síntese química , Substâncias Protetoras/metabolismo , Substâncias Protetoras/toxicidade , Ligação Proteica , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
20.
Thromb J ; 19(1): 61, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454532

RESUMO

BACKGROUND: Immune thrombocytopenia (ITP) is an autoimmune disease characterized as a low platelet count resulting from immune-mediated platelet destruction. Dimethyl fumarate (DMF) is widely applied for the treatment of several autoimmune diseases with immunosuppressive effect. However, whether it ameliorates ITP is unclear. This study aims to evaluate whether DMF has a preventive effect on ITP in mice. METHODS: DMF (30, 60 or 90 mg/kg body weight) was intraperitoneally injected into mice followed by injection of rat anti-mouse integrin GPIIb/CD41antibody to induce ITP. Peripheral blood was isolated to measure platelet count and spleen mononuclear cells were extracted to measure Th1 and Treg cells along with detecting the levels of IFN-γ, and TGFß-1 in plasma and CD68 expression in spleen by immuohistochemical staining. Additionally, macrophage cell line RAW264.7 was cultured and treated with DMF followed by analysis of cell apoptosis and cycle, and the expression of FcγRI, FcγRIIb and FcγRIV mRNA. RESULTS: DMF significantly inhibited antiplatelet antibody-induced platelet destruction, decreased Th1 cells and the expression of T-bet and IFN-γ, upregulated Treg cells and the expression of Foxp3 and TGF-ß1 as well as reduced CD68 expression in the spleen of ITP mouse. DMF-treated RAW264.7 cells showed S-phase arrest, increased apoptosis and downregulated expression of FcγRI and FcγRIV. Meanwhile, in vitro treatment of DMF also decreased the expression of cyclin D1 and E2, reduced Bcl-2 level and increased Bax expression and caspase-3 activation. CONCLUSIONS: In conclusion, DMF prevents antibody-mediated platelet destruction in ITP mice possibly through promoting apoptosis, indicating that it might be used as a new approach for the treatment of ITP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA