RESUMO
Bribery is a common form of corruption that takes place when a briber suborns a power holder to achieve an advantageous outcome at the cost of moral transgression. Although bribery has been extensively investigated in the behavioral sciences, its underlying neurobiological basis remains poorly understood. Here, we employed transcranial direct-current stimulation (tDCS) in combination with a novel paradigm (N = 119 adults) to investigate whether disruption of right dorsolateral prefrontal cortex (rDLPFC) causally changed bribe-taking decisions of power holders. Perturbing rDLPFC via tDCS specifically made participants more willing to take bribes as the relative value of the offer increased. This tDCS-induced effect could not be explained by changes in other measures. Model-based analyses further revealed that such neural modulation alters the concern for generating profits for oneself via taking bribes and reshapes the concern for the distribution inequity between oneself and the briber, thereby influencing the subsequent decisions. These findings reveal a causal role of rDLPFC in modulating corrupt behavior.
Assuntos
Estimulação Transcraniana por Corrente Contínua , Adulto , Córtex Pré-Frontal Dorsolateral , Humanos , Princípios Morais , Córtex Pré-Frontal/fisiologiaRESUMO
In modern society, the natural drive to behave impulsively in order to obtain rewards must often be curbed. A continued failure to do so is associated with a range of outcomes including drug abuse, pathological gambling, and obesity. Here, we used virtual reality technology to investigate whether spatial proximity to rewards has the power to exacerbate the drive to behave impulsively toward them. We embedded two behavioral tasks measuring distinct forms of impulsive behavior, impulsive action, and impulsive choice, within an environment rendered in virtual reality. Participants responded to three-dimensional cues representing food rewards located in either near or far space. Bayesian analyses revealed that participants were significantly less able to stop motor actions when rewarding cues were near compared with when they were far. Since factors normally associated with proximity were controlled for, these results suggest that proximity plays a distinctive role in driving impulsive actions for rewards.