Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 261: 119694, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068971

RESUMO

Global environmental contamination by microplastics (MPs) is a growing problem with potential One Health impacts. The presence of MPs in vital organs, such as the heart, is of particular concern, but the knowledge is still limited. The goal of the present pilot study was to investigate the potential presence of MPs in the heart of wild specimens of three commercial fish species (Merluccius merluccius, Sardina pilchardus, and Trisopterus luscus) from the North East Atlantic Ocean. Heart samples from 154 fish were analysed for MP content (one heart sample per fish). A total of 44 MPs were recovered from heart samples from the three species. MPs had varied chemical composition (5 polymers), shapes (4) and colours (5). Differences in the profile of the MPs among species was observed (p ≤ 0.05). Thirty fish (19%) had MPs in their hearts, with a total mean (±SD) concentration of 0.286 ± 0.644 MPs/fish. S. pilchardus had the highest heart contamination (p ≤ 0.05). There were no significant (p > 0.05) differences between M. merluccius and T. luscus. These findings in fish with different biological and ecological traits together with literature data suggest that heart contamination likely is a disseminated phenomenon. Therefore, further research on the presence of MPs in the cardiovascular system and its potential health effects is very much needed.

2.
Fish Shellfish Immunol ; 137: 108793, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146847

RESUMO

Marine environments receive plastic waste, where it suffers a transformation process into smaller particles. Among them, microplastics (MPs; <5 mm) are ingested by aquatic organisms leading to negative effects on animal welfare. The interactions between MPs, contaminants and organisms are poorly understood. To clarify this issue, European seabass (Dicentrarchus labrax L.) were fed with diets supplemented with 0 (control), polyethylene (PE) MPs (100 mg/kg diet), perfluorooctanesulfonic acid (PFOS, 4.83 µg/kg diet) or PFOS adsorbed to MPs (MPs-PFOS; final concentrations of 4.83 µg and 100 mg of PFOS and MP per kg of feed, respectively). Samples of skin mucus, serum, head-kidney (HK), liver, muscle, brain and intestine were obtained. PFOS levels were high in the liver of fish fed with the PFOS-diet, and markedly reduced when adsorbed to MPs. Compared to the control groups, liver EROD activity did not show any significant changes, whereas brain and muscle cholinesterase activities were decreased in all the groups. The histological and morphometrical study on liver and intestine showed significant alterations in fish fed with the experimental diets. At functional level, all the experimental diets affected the humoral (peroxidase, IgM, protease and bactericidal activities) as well as cellular (phagocytosis, respiratory burst and peroxidase) activities of HK leukocytes, being more marked those effects caused by the PFOS diet. Besides, treatments produced inflammation and oxidative stress as evidenced at gene level. Principal component analysis demonstrated that seabass fed with MPs-PFOS showed more similar effects to MPs alone than to PFOS. Overall, seabass fed with MPs-PFOS diet showed similar or lower toxicological alterations than those fed with MPs or PFOS alone demonstrating the lack of additive effects or even protection against PFOS toxicity.


Assuntos
Bass , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Polietileno , Plásticos , Bass/genética , Peroxidases , Poluentes Químicos da Água/toxicidade
3.
Environ Res ; 215(Pt 1): 114236, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36058278

RESUMO

This work was focused on evaluating the occurrence of endocrine-disrupting compounds (EDCs) in fish muscles, such as bisphenol analogues, personal care products, including some UV-filters and musk fragrances, and selected pesticides. A total of 238 muscle samples of three fish species (Platichthys flesus, Mugil cephalus, and Dicentrarchus labrax) of an important estuary ending in the North East Atlantic Ocean (Douro River estuary, Portugal), in different seasons of the year, was analysed. M. cephalus was the species with a greater occurrence of contaminants, mainly in fishes collected during the spring. Bisphenol A was the main bisphenol analogue detected with an average content of 23.1 µg/kg wet weight (w.w.). Among chemicals used in personal care products, galaxolide, tonalide, and 2-ethylhexyl salicylate, were the most often found, being present in 15.9% (2.2-538.4 µg/kg w. w.), 4.6% (1.1-57.8 µg/kg w. w.) and 3.4% (3.9-56.1 µg/kg w. w.) of the samples, respectively. About 14% of the samples contained residues of at least one pesticide, being alachlor, aldrin, p,p'-DDT, permethrin, and prochloraz the main chemicals observed, varying from 0.1 µg/kg w. w. (p,p'-DDT) to 37.8 µg/kg w. w. (prochloraz). The daily intake estimates of the most frequent EDCs found in the fish muscles suggested that there are no health concerns, based on the recommended weekly consumption of fish for adults.


Assuntos
Disruptores Endócrinos , Praguicidas , Poluentes Químicos da Água , Aldrina , Animais , Oceano Atlântico , DDT/análise , Disruptores Endócrinos/análise , Monitoramento Ambiental , Estuários , Peixes , Músculos , Permetrina , Praguicidas/análise , Medição de Risco , Rios/química , Poluentes Químicos da Água/análise
4.
Ecotoxicol Environ Saf ; 181: 60-68, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174108

RESUMO

The widespread use of microplastics and nanomaterials resulting in environmental contamination is of high concern. Microplastics have been found to modulate the toxicity of other environmental contaminants. Thus, the hypothesis that microplastics increase the toxicity of gold nanoparticles to the marine microalgae Tetraselmis chuii was tested. In a laboratory bioassay, T. chuii cultures were exposed for 96 h to ∼5 nm diameter gold nanoparticles (AuNP) and to virgin 1-5 µm diameter microplastics (MP), alone and in mixture. The treatments were: control; citrate-control; AuNP alone (0.1, 0.3 and 3 mg/L); MP alone (0.3, 0.9 and 4 mg/L) and mixture of the two substances in three different concentrations (0.1 mg/L AuNP + 0.3 mg/L MP; 0.3 mg/L AuNP + 0.9 mg/L MP; 3 mg/l AuNP + 4 mg/L MP). The effect criterion was the inhibition of the average specific growth rate. AuNP alone and MP alone did not cause significant decrease of T. chui average specific growth rate up to 3 mg/L and 4 mg/L, respectively. The mixture containing 3 mg/L AuNP + 4 mg/L MP significantly reduced the average specific growth rate of the microalgae. Therefore, this mixture was more toxic to T. chuii than its components individually. Overall, the results of the present study indicated that the MP and AuNP tested have a relatively low toxicity to T. chuii, but the toxicity increases when they are in mixtures containing high concentrations of both substances. These proof-of-concept findings stress the need of more research on the toxicity of mixtures containing microplastics and nanomaterials.


Assuntos
Clorófitas/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Microalgas/efeitos dos fármacos , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Bioensaio , Modelos Teóricos
5.
Ecotoxicol Environ Saf ; 164: 155-163, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30107325

RESUMO

The main objectives of this study were to investigate the effects of a mixture of microplastics and mercury on Corbicula fluminea, the post-exposure recovery, and the potential of microplastics to influence the bioconcentration of mercury by this species. Bivalves were collected in the field and acclimated to laboratory conditions for 14 days. Then, a 14-day bioassay was carried out. Bivalves were exposed for 8 days to clean medium (control), microplastics (0.13 mg/L), mercury (30 µg/L) and to a mixture (same concentrations) of both substances. The post-exposure recovery was investigated through 6 additional days in clean medium. After 8 and 14 days, the following endpoints were analysed: the post-exposure filtration rate (FR); the activity of cholinesterase enzymes (ChE), NADP-dependent isocitrate dehydrogenase (IDH), octopine dehydrogenase, catalase, glutathione reductase, glutathione peroxidase and glutathione S-transferases (GST), and the levels of lipid peroxidation (LPO). After 8 days of exposure to mercury, the bioconcentration factors (BCF) were 55 in bivalves exposed to the metal alone and 25 in bivalves exposed to the mixture. Thus, microplastics reduced the bioconcentration of mercury by C. fluminea. Bivalves exposed to microplastics, mercury or to the mixture had significantly (p ≤ 0.05) decreased FR and increased LPO levels, indicating fitness reduction and lipid oxidative damage. In addition, bivalves exposed to microplastics alone had significant (p ≤ 0.05) reduction of adductor muscle ChE activity, indicating neurotoxicity. Moreover, bivalves exposed to mercury alone had significantly (p ≤ 0.05) inhibited IDH activity, suggesting alterations in cellular energy production. Antagonism between microplastics and mercury in FR, ChE activity, GST activity and LPO levels was found. Six days of post-exposure recovery in clean medium was not enough to totally reverse the toxic effects induced by the substances nor to eliminate completely the mercury from the bivalve's body. These findings have implications to animal, ecosystem and human health.


Assuntos
Biomarcadores/metabolismo , Corbicula/efeitos dos fármacos , Mercúrio/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bioensaio , Catalase/metabolismo , Corbicula/metabolismo , Filtração , Água Doce/química , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
7.
Ecotoxicol Environ Saf ; 127: 51-60, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26802562

RESUMO

In the present study, Xenopus laevis embryos were exposed to a range of perfluorooctane sulfonate (PFOS) concentrations (0, 0.5, 6, 12, 24, 48 and 96mg/L) for 96h in laboratorial conditions to establish toxicity along with possible gene expression changes. Mortality and deformities were monitored daily and head-tail length was measured at the end of the assay as an indicator of growth. At 24 and 96h post-exposure (hpe), the mRNA expression levels of the genetic markers involved in general stress responses (hsp70, hsp47, crh-a and ucn1), oxidative stress (cat.2 and sod), lipid metabolism (ppard) and apoptosis (tp53 and bax) were analyzed by RT-qPCR. Malformations were significantly higher in the embryos exposed to the highest PFOS concentration (41.8% to 56.4%) compared to controls (5.5%) at 48, 72 and 96hpe. Growth inhibition was observed in the embryos exposed to PFOS concentrations≥48mg/L. At 24 hpe, a statistically significant up-regulation of genes hsp70, hsp47, ppard, tp53 and bax in relation to controls was found. Similar responses were found for genes hsp70, hsp47, crh-a, ucn1, sod and ppard at 96 hpe. Alterations in the mRNA expression levels indicated both a stress response to PFOS exposure during X. laevis embryo development, and alterations in the regulation of oxidative stress, apoptosis, and differentiation. These molecular alterations were detected at an earlier exposure time or at lower concentrations than those producing developmental toxicity. Therefore, these sensitive warning signals could be used together with other biomarkers to supplement alternative methods (i.e. the frog embryo test) for developmental toxicity safety evaluations, and as tools in amphibian risk assessments for PFOS and its potential substitutes.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Xenopus laevis/embriologia , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Regulação para Cima , Xenopus laevis/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-25499240

RESUMO

The aim of this study was to investigate the variation of several biomarkers in wild populations of Corbicula fluminea in relation to abiotic condition changes to identify environmental factors associated with increased stress in this species potentially leading to massive mortality events. The study was carried out from July to October in the freshwater tidal areas of the estuaries of Minho and Lima Rivers (NW Iberian Peninsula). Monthly, 7 biomarkers (biotransformation, energy production, anti-oxidant defenses and lipid peroxidation damages) were determined in C. fluminea and 17 abiotic parameters were determined in water or sediments in 4 sampling sites: M1, M2 and M3 in Minho (up=> downstream); and L in Lima estuaries. The results of biomarkers were integrated using the Integrated Biomarker Response (IBR), Index and also analysed in relation to environmental parameters by Redundancy Analysis (RDA). Overall, the findings of the present study indicate that July and August are particularly stressful months for the studied C. fluminea populations, especially at downstream sites; the increase of nutrients and ammonium water concentrations, water temperature and conductivity are major contributors for this increased stress; the biomarkers indicated that in July/August C. fluminea is exposed to oxidative stress inducers, environmental chemical contaminants biotransformed by esterases and glutathione S-transferase enzymes, and that organisms need additional energy to cope with the chemical and/or thermally-induced stress. The findings of the present study stress the importance of biomonitoring the health condition of C. fluminea because it may allow determining the likelihood of summer/post summer mortality syndrome in this species.


Assuntos
Biomarcadores/metabolismo , Corbicula/fisiologia , Animais , Biomarcadores/análise , Catalase/metabolismo , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Glutationa Transferase/metabolismo , Espécies Introduzidas , Peroxidação de Lipídeos , Mortalidade , Estações do Ano , Espanha , Estresse Fisiológico , Temperatura
9.
Ecotoxicology ; 23(7): 1326-35, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25011921

RESUMO

Coelomocytes, immunocompetent cells of lumbricids, have received special attention for ecotoxicological studies due to their sensibility to pollutants. Their in vitro responses are commonly quantified after in vivo exposure to real or spiked soils. Alternatively, quantifications of in vitro responses after in vitro exposure are being studied. Within this framework, the present study aimed at optimizing the neutral red uptake (NRU) assay in primary culture of Eisenia fetida coelomocytes for its application in soil toxicity testing. Optimized assay conditions were: earthworm depuration for 24 h before retrieving coelomocytes by electric extrusion; 2 × 10(5) seeded cells/well (200 µl) for the NRU assay and incubation for 1 h with neutral red dye. Supplementation of the culture medium with serum was not compatible with the NRU assay, but coelomocytes could be maintained with high viability for 3 days in a serum-free medium without replenishment. Thus, primary cultures were used for 24 h in vitro toxicity testing after exposure to different concentrations of Cd, Cu, Ni and Pb (ranging from 0.1 to 100 µg/ml). Primary cultures were sensitive to metals, the viability declining in a dose-dependent manner. The toxicity rank was, from high to low, Pb > Ni > Cd > Cu. Therefore, it can be concluded that the NRU assay in coelomocytes in primary cultures provides a sensitive and prompt response after in vitro exposure to metals.


Assuntos
Metais Pesados/toxicidade , Oligoquetos/citologia , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Bioensaio , Células Cultivadas , Vermelho Neutro , Cultura Primária de Células , Testes de Toxicidade
10.
Environ Pollut ; 352: 124133, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754690

RESUMO

Microplastic (MP) pollution has become a global concern due to its potential impacts on the environment, ecosystem services and human health. The goals of the present study were to document the MP contamination in wild specimens of Mytilus galloprovincialis sampled along the Atlantic coast of the North region of Portugal continental (NW Portuguese coast), and to estimate the human risk of MP intake (HRI) through the consumption of local mussels as seafood. Mussels were collected at four sampling sites along the NW Portuguese coast (40 mussels per site), and the whole soft body of each mussel was analysed for MP content. HRI estimates were based on the mean of MP items per wet weight of mussel analysed tissue (MP/g) and consumption habits. A total of 132 MP items were recovered from mussels. MP had diverse sizes (98-2690 µm) and colours. The most common shapes were fibres (39%) and pellets (36%). Five polymers were identified in the MP: polyethylene (50%), polystyrene (15%), poly(ethylene vinyl acetate) (14%), polyamide (12%) and polypropylene (9%). From the 160 analysed mussels, 55% had MP. The mean and standard error of the mean of mussel contamination ranged from 0.206 ± 0.067 and 0.709 ± 0.095 MP/g. Compared to estimates based on MP contamination in mussels from other areas and varied consumption habits, the HRI through the consumption of mussels from the NW Portuguese coast is relatively low.


Assuntos
Monitoramento Ambiental , Microplásticos , Mytilus , Alimentos Marinhos , Poluentes Químicos da Água , Animais , Portugal , Poluentes Químicos da Água/análise , Microplásticos/análise , Alimentos Marinhos/análise , Monitoramento Ambiental/métodos , Humanos , Mytilus/química , Contaminação de Alimentos/análise , Medição de Risco , Bivalves/química , Exposição Dietética/estatística & dados numéricos , Oceano Atlântico
11.
Sci Total Environ ; 929: 172535, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641109

RESUMO

Microplastics (MPs) are emerging contaminants of increasing concern as they may cause adverse effects and carry other contaminants, which may potentially compromise human health. Despite occurring in aquatic ecosystems worldwide, the knowledge about MP presence in different aquaculture systems and their potential impact on seafood products is still limited. This study aimed to determine the levels of MPs in water, feed, and European seabass (Dicentrarchus labrax) from three relevant aquaculture systems and estimate human exposure to MPs and metals through seabass consumption. The recirculating aquaculture system (RAS) had the highest MP occurrence in water and feed. MP levels in seabass followed the aquaculture system's levels in water and feed, with RAS-farmed fish presenting the highest MP load, both in the fish gastrointestinal tract (GIT) and muscle, followed by pond-, and cage-farmed fish. MPs' characteristics across aquaculture systems and fish samples remained consistent, with the predominant recovered particles falling within the MP size range. The particles were visually characterized and chemically identified by micro-Fourier Transform Infrared Spectroscopy (µFTIR). Most of these particles were fibres composed of man-made cellulose and PET. MP levels in GIT were significantly higher than in muscle for pond- and RAS-farmed fish, MPs' bioconcentration factors >1 indicated bioconcentration in farmed seabass. Metal concentrations in fish muscle were below permissible limits, posing low intake risks for consumers according to the available health-based guidance values and estimated dietary scenarios.


Assuntos
Aquicultura , Bass , Metais , Microplásticos , Poluentes Químicos da Água , Bass/metabolismo , Animais , Poluentes Químicos da Água/análise , Microplásticos/análise , Humanos , Metais/análise , Inocuidade dos Alimentos , Monitoramento Ambiental , Contaminação de Alimentos/análise , Medição de Risco , Alimentos Marinhos/análise , Exposição Ambiental/estatística & dados numéricos
12.
Sci Total Environ ; 854: 158649, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089038

RESUMO

Nowadays there is a high concern about the combined effects of global warming and emerging environmental contaminants with significant increasing trends of use, such as lithium (Li) and microplastics (MPs), both on wildlife and human health. Therefore, the effects of high light intensity (26,000 lx) or warmer water temperature (25 °C) on the long-term toxicity of Li and mixtures of Li and MPs (Li-MPs mixtures) were investigated using model populations of the freshwater zooplankton species Daphnia magna. Three 21-day bioassays were done in the laboratory at the following water temperatures and light intensities: (i) 20 °C/10830 lx; (ii) 20 °C/26000 lx (high light intensity); (iii) 25 °C/10830 lx (warmer temperature). Based on the 21-day EC50s on reproduction, high light intensity increased the reproductive toxicity of Li and Li-MPs mixtures by ~1.3 fold; warmer temperature increased the toxicity of Li by ~1.2 fold, and the toxicity of Li-MPs mixtures by ~1.4 fold based on the concentration of Li, and by ~2 fold based on the concentrations of MPs. At high light intensity, Li (0.04 mg/L) and Li-MPs mixtures (0.04 Li + 0.09 MPs mg/L) reduced the population fitness by 32 % and 41 %, respectively. Warmer temperature, Li (0.05 mg/L) and Li-MPs mixtures (0.05 Li + 0.09 MPs mg/L) reduced it by 63 % and 71 %, respectively. At warmer temperature or high light intensity, higher concentrations of Li and Li-MPs mixtures lead to population extinction. Based on the population growth rate and using data of bioassays with MPs alone done simultaneously, Li and MPs interactions were antagonistic or synergistic depending on the scenario. High light intensity and chemical stress generally acted synergistically. Warmer temperature and chemical stress always acted synergistically. These findings highlight the threats of long-term exposure to Li and Li-MPs mixtures to freshwater zooplankton and Global Health in a warmer world.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Lítio , Zooplâncton , Água , Saúde Global , Poluentes Químicos da Água/toxicidade , Daphnia
13.
J Hazard Mater ; 452: 131280, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37030218

RESUMO

Graphene oxide (GO) has gained a great scientific and economic interest due to its unique properties. As incorporation of GO in consumer products is rising, it is expected that GO will end up in oceans. Due to its high surface to volume ratio, GO can adsorb persistent organic pollutants (POPs), such as benzo(a)pyrene (BaP), and act as carrier of POPs, increasing their bioavailability to marine organisms. Thus, uptake and effects of GO in marine biota represent a major concern. This work aimed to assess the potential hazards of GO, alone or with sorbed BaP (GO+BaP), and BaP alone in marine mussels after 7 days of exposure. GO was detected through Raman spectroscopy in the lumen of the digestive tract and in feces of mussels exposed to GO and GO+BaP while BaP was bioaccumulated in mussels exposed to GO+BaP, but especially in those exposed to BaP. Overall, GO acted as a carrier of BaP to mussels but GO appeared to protect mussels towards BaP accumulation. Some effects observed in mussels exposed to GO+BaP were due to BaP carried onto GO nanoplatelets. Enhanced toxicity of GO+BaP with respect to GO and/or BaP or to controls were identified for other biological responses, demonstrating the complexity of interactions between GO and BaP.


Assuntos
Grafite , Mytilus , Poluentes Químicos da Água , Animais , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Poluentes Químicos da Água/análise , Grafite/toxicidade
14.
Heliyon ; 9(1): e13070, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36711285

RESUMO

Pollution-induced neurotoxicity is of high concern. This pilot study investigated the potential relationship between the presence of microplastics (MPs) in the brain of 180 wild fish (Dicentrarchus labrax, Platichthys flesus, Mugil cephalus) from a contaminated estuary and the activity of the acetylcholinesterase (AChE) enzyme. MPs were found in 9 samples (5% of the total), all of them from D. labrax collected in the summer, which represents 45% of the samples of this species collected in that season (20). Seventeen MPs were recovered from brain samples, with sizes ranging from 8 to 96 µm. Polyacrylamide, polyacrylic acid and one biopolymer (zein) were identified by Micro-Raman spectroscopy. Fish with MPs showed lower (p ≤ 0.05) AChE activity than those where MPs were not found. These findings point to the contribution of MPs to the neurotoxicity induced by long-term exposure to pollution, stressing the need of further studies on the topic to increase 'One Health' protection.

15.
Adv Mar Biol ; 94: 159-200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37244677

RESUMO

Research on the occurrence of microplastics in wild fish populations is a constantly growing area, requiring continuous reviews to properly keep up with the fast pace of publications and guide future work. This review analyses the scientific output of 260 field studies covering 1053 different fish taxa for the presence of microplastics. To date, microplastics have been recorded in 830 wild fish species, including 606 species of interest to commercial and subsistence fisheries. Among these, based on IUCN Red List status, 34 species are globally classified in one of the three threatened categories (Critically Endangered, Endangered or Vulnerable) and another 22 species were assessed as "Near Threatened". Of the species for which the IUCN Red List tracks population trend data, the fish species reported to have microplastics so far include 81 which are recorded as declining, 134 as stable and just 16 as increasing. This review highlights the potential implications of fish microplastic contamination to biodiversity conservation, sustainability of wild fish stocks, and human food safety and security. Finally, recommendations for future research are presented.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Humanos , Microplásticos , Plásticos , Biodiversidade , Peixes
16.
Chemosphere ; 335: 139055, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37268227

RESUMO

Plastic particles (PLs) are ubiquitous in aquatic ecosystems, and aquaculture production is susceptible to contamination from external or endogenous sources. This study investigated PL presence in water, fish feed and body sites of 55 European seabass produced in a recirculating aquaculture system (RAS). Fish morphometric parameters and health status biomarkers were determined. A total of 372 PLs were recovered from water (37.2 PL/L), 118 PLs from feed (3.9 PL/g), and 422 from seabass (0.7 PL/g fish; all body sites analysed). All 55 specimens had PLs in at least two of the four body sites analysed. Concentrations were higher in the gastrointestinal tract (GIT; 1.0 PL/g) and gills (0.8 PL/g) than in the liver (0.8 PL/g) and muscle (0.4 PL/g). PL concentration in GIT was significantly higher than in muscle. Black, blue, and transparent fibres made of man-made cellulose/rayon and polyethylene terephthalate were the most common PLs in water and seabass, while black fragments of phenoxy resin were the most common in feed. The levels of polymers linked to RAS components (polyethylene, polypropylene, and polyvinyl chloride) were low, suggesting a limited contribution to the overall PL levels found in water and/or fish. The mean PL size recovered from GIT (930 µm) and gills (1047 µm) was significantly larger than those found in the liver (647 µm) and dorsal muscle (425 µm). Considering all body sites, PLs bioconcentrated in seabass (BCFFish >1), but their bioaccumulation did not occur (BAFFish <1). No significant differences were observed in oxidative stress biomarkers between fish with low (<7) and high (≥7) PL numbers. These findings suggest that fish produced in RAS are mainly exposed to MPs through water and feed. Further monitoring under commercial conditions and risk assessment are warranted to identify potential threats to fish and human health and define mitigating measures.


Assuntos
Bass , Poluentes Químicos da Água , Humanos , Animais , Microplásticos , Plásticos/análise , Água/análise , Ecossistema , Aquicultura , Biomarcadores , Poluentes Químicos da Água/análise , Monitoramento Ambiental
17.
Mar Pollut Bull ; 197: 115704, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944437

RESUMO

This study documented seasonal levels of microplastics (MPs) and biomarkers (condition index, neurotoxicity, energy, oxidative stress) in mussels (Mytilus galloprovincialis), and water physico-chemical parameters in the Douro estuary (NE Atlantic coast), and estimated the human risk of MP intake (HRI) through mussels. Mussel stress was determined through the Integrated Biomarker Response (IBR). HRI was estimated from mussel MP concentrations and consumer habits. MPs were mainly micro-fibres (72 %) with varied chemical composition. Seasonal MP means (±SEM) in mussels ranged from 0.111 ± 0.044 (spring) to 0.312 ± 0.092 MPs/g (summer). Seasonal variations of mussel stress (IBR: 1.4 spring to 9.7 summer) and MP concentrations were not related. MeO-BDEs, PBDEs, temperature, salinity and other factors likely contributed to mussel stress variation. HRI ranged from 2438 to 2650 MPs/year. Compared to the literature, MP contamination in mussels is low, as well as the human risk of MP intake through their consumption.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Humanos , Microplásticos , Plásticos/farmacologia , Poluentes Químicos da Água/análise , Mytilus/química , Alimentos Marinhos/análise , Biomarcadores
18.
Biomarkers ; 17(3): 275-85, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22435595

RESUMO

The short-term (96 h) toxic effects of two polycyclic aromatic hydrocarbons (PAHs), naphthalene (NAP) and pyrene (PYR), on the common prawn (Palaemon serratus) were investigated in laboratory bioassays, including a fitness related assay based on the post-exposure swimming velocity. Other effect criteria were biomarkers of neurotoxicity, oxidative stress and bioenergetics, and mortality. In the range of concentrations tested (NAP: 0.13-8 mg/L; PYR: 0.006-0.4 mg/L), both PAHs impaired the swimming velocity, induced oxidative stress and damage, and changed the activity of lactate dehydrogenase and isocitrate dehydrogenase. NAP also caused mortality (96 h-LC50=3.5 mg/L). Thus, both PAHs were able to cause toxic effects on P. serratus after a short period of exposure through the water, including the reduction of individual fitness. PYR was five folds more effective in reducing the swimming velocity of P. serratus than NAP. These findings are of interest for the marine ecological risk assessment of oil spills.


Assuntos
Crustáceos/efeitos dos fármacos , Naftalenos/toxicidade , Pirenos/toxicidade , Animais
19.
Biomarkers ; 17(1): 62-77, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22188224

RESUMO

Effects induced on wild populations by recurrent environmental contamination may difficult the ecological risk assessment of punctual pollution events such as oil spills. Here, the issue was addressed by comparing the health status of Pomatoschistus microps populations from four NW Iberian estuaries, using an integrated chemical-biological monitoring. Despite high seasonal variability, the parameters measured discriminated estuaries with different contamination levels and associated biological effects with chemical and abiotic stress. The decreased health status of fish from polluted sites strengthens the need of considering pollution-induced background effects and seasonal variability when assessing impacts and risks of oil and other chemical spills.


Assuntos
Acetilcolinesterase/análise , Monitoramento Ambiental/métodos , Glutationa Transferase/análise , L-Lactato Desidrogenase/análise , Perciformes/metabolismo , Poluentes Químicos da Água/efeitos adversos , Análise de Variância , Animais , Biomarcadores/análise , Água Doce/química , Sedimentos Geológicos/química , Metais/efeitos adversos , Metais/análise , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/análise , Portugal , Medição de Risco , Água do Mar/química , Poluentes Químicos da Água/análise , Qualidade da Água
20.
Ecotoxicol Environ Saf ; 75(1): 151-62, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21937114

RESUMO

The response of wild fish to heavy metals was studied in sole (Solea senegalensis) collected in 2004, 2005 and 2006 at three sampling sites from Huelva estuary (SW Spain), in the vicinity of a petrochemical and mining industry. Heavy metals As, Cd, Cu, Fe, Pb and Zn were analyzed in samples collected from sediment, water and tissue (liver) to examine their bioconcentration and effects in fish such as lipid peroxidation (LPO), catalase (CAT; EC 1.11.1.6), glutathione peroxidase (GPx; EC 1.8.1.7), glutathione S-transferase (GST; EC 2.5.1.18) and glutathione reductase (GR; EC 1.11.1.6) were also analyzed in the fish liver. The results showed different effects in sole from diverse locations with varying degrees of pollution. Significant differences in LPO, CAT and GR activities between control fish and fish from sampling sites were observed as well as seasonal differences for biomarkers. Significant correlations were established between some biomarkers and heavy metals concentrations in liver, sediment and water. This study indicates the usefulness of integrating a set of biomarkers to assess the effects of pollutants in aquatic environments under complex mix of pollutants and chronic pollution situation.


Assuntos
Linguados/metabolismo , Metais Pesados/toxicidade , Estresse Oxidativo/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Monitoramento Ambiental , Poluição Ambiental , Linguados/fisiologia , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estações do Ano , Espanha , Poluição Química da Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA