Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 39(1): 547-556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35313781

RESUMO

Optimization of treatment strategies for prostate cancer patients treated with curative radiation therapy (RT) represents one of the major challenges for the radiation oncologist. Dose escalation or combination of RT with systemic therapies is used to improve tumor control in patients with unfavorable prostate cancer, at the risk of increasing rates and severity of treatment-related toxicities. Elevation of temperature to a supra-physiological level has been shown to both increase tumor oxygenation and reduce DNA repair capabilities. Thus, hyperthermia (HT) combined with RT represents a compelling treatment strategy to improve the therapeutic ratio in prostate cancer patients. The aim of the present systematic review is to report on preclinical and clinical evidence supporting the combination of HT and RT for prostate cancer, discussing future applications and developments of this combined treatment.


Assuntos
Hipertermia Induzida , Neoplasias da Próstata , Terapia Combinada , Humanos , Hipertermia , Masculino , Neoplasias da Próstata/radioterapia
2.
BMC Med Imaging ; 21(1): 110, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253181

RESUMO

BACKGROUND: For the treatment of radicular pain, nerve root infiltrations can be performed under MRI guidance in select, typically younger, patients where repeated CT exams are not desirable due to associated radiation risk, or potential allergic reactions to iodinated contrast medium. METHODS: Fifteen 3 T MRI-guided nerve root infiltrations were performed in 12 patients with a dedicated surface coil combined with the standard spine coil, using a breathhold PD sequence. The needle artifact on the MR images and the distance between the needle tip and the infiltrated nerve root were measured. RESULTS: The distance between the needle tip and the nerve root was 2.1 ± 1.4 mm. The visual artifact width, perpendicular to the needle long axis, was 2.1 ± 0.7 mm. No adverse events were reported. CONCLUSION: This technical note describes the optimization of the procedure in a 3 T magnetic field, including reported procedure time and an assessment of targeting precision.


Assuntos
Injeções Espinhais/métodos , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Radiculopatia/tratamento farmacológico , Raízes Nervosas Espinhais/diagnóstico por imagem , Dexametasona/administração & dosagem , Feminino , Glucocorticoides/administração & dosagem , Humanos , Dor Lombar/tratamento farmacológico , Vértebras Lombares/inervação , Masculino , Pessoa de Meia-Idade , Ropivacaina/administração & dosagem , Nervo Isquiático/diagnóstico por imagem
3.
IEEE Open J Eng Med Biol ; 5: 524-533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050977

RESUMO

PURPOSE: Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. METHODS: A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from in vivo HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). RESULTS: As compared to the manual EP, the rotation difference with the TOP was on average -3.1 ± 7.1° and the distance difference was on average -7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.

4.
Cancers (Basel) ; 15(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37568777

RESUMO

BACKGROUND: HIFU ablation of liver malignancies is particularly challenging due to respiratory motion, high tissue perfusion and the presence of the rib cage. Based on our previous development of a super-convergent phased-array transducer, we aimed to further investigate, in vivo, its applicability to deep intrahepatic targets. METHODS: In a series of six pigs, a pseudo-tumor model was used as target, visible both on intra-operatory MRI and post-mortem gross pathology. The transcostal MRgHIFU ablation was prescribed coplanar with the pseudo-tumor, either axial or sagittal, but deliberately shifted 7 to 18 mm to the side. No specific means of protection of the ribs were implemented. Post-treatment MRI follow-up was performed at D7, followed by animal necropsy and gross pathology of the liver. RESULTS: The pseudo-tumor was clearly identified on T1w MR imaging and subsequently allowed the MRgHIFU planning. The peak temperature at the focal point ranged from 58-87 °C. Gross pathology confirmed the presence of the pseudo-tumor and the well-delineated MRgHIFU ablation at the expected locations. CONCLUSIONS: The specific design of the transducer enabled a reliable workflow. It demonstrated a good safety profile for in vivo transcostal MRgHIFU ablation of deep-liver targets, graded as challenging for standard surgery.

5.
Cancers (Basel) ; 15(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36612159

RESUMO

Design, embodiment, and experimental study of a novel concept of extracorporeal phased array ultrasound transducer for prostate cancer regional deep hyperthermia treatments using a transperineal acoustic window is presented. An optimized design of hyperthermia applicator was derived from a modelling software where acoustic and thermal fields were computed based on anatomical data. Performance tests have been experimentally conducted on gel phantoms and tissues, under 3T MRI guidance using PRFS thermometry. Feedback controlled hyperthermia (ΔT = 5 °C during 20min) was performed on two ex vivo lamb carcasses with prostate mimicking pelvic tissue, to demonstrate capability of spatio-temporal temperature control and to assess potential risks and side effects. Our optimization approach yielded a therapeutic ultrasound transducer consisting of 192 elements of variable shape and surface, pseudo randomly distributed on 6 columns, using a frequency of 700 kHz. Radius of curvature was 140 mm and active water circulation was included for cooling. The measured focusing capabilities covered a volume of 24 × 50 × 60 mm3. Acoustic coupling of excellent quality was achieved. No interference was detected between sonication and MR acquisitions. On ex vivo experiments the target temperature elevation of 5 °C was reached after 5 min and maintained during another 15 min with the predictive temperature controller showing 0.2 °C accuracy. No significant temperature rise was observed on skin and bonny structures. Reported results represent a promising step toward the implementation of transperineal ultrasound hyperthermia in a pilot study of reirradiation in prostate cancer patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA